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Abstract

The Catsper channel is a sperm-specific, Ca**-permeable, pH-dependent, and low voltage-dependent channel that

is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All
of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed
in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca®*ATPase, K*

channel, Hv1 channel and HCO;3 transporters. Furthermore, the Catsper channel is regulated by some physiological
stimulants, such as progesterone, cyclic nucleotides (e.g., CAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine
serum albumin (BSA). All of these factors normally stimulate Ca** entry into sperm through the Catsper channel. In
addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will
focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
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Background

Mature mammalian sperm execute many important physio-
logical processes, such as sperm hyperactivation, chemotaxis
towards the egg, capacitation and acrosome reaction, before
even entering the female reproductive tract and contacting
eggs for fertilization. Most studies show that all of physio-
logical processes are closely related to the change of the cal-
cium ion concentration ([Ca®*]i) [1, 2] in sperm. There are
two main sources for Calcium ions in sperm: (1) some of
them are stored in a calcium pump located in the head of
sperm, a redundant nuclear envelope in the same position
as the IP3 receptor in the neck region, and (2) others are
packed in the mitochondria of the midpiece [3, 4]. Some
processes in sperm depend on calcium ion channels open-
ing in the cell membrane [5]. Several typical voltage-gated
Ca®* channels are located in testis, but most voltage-gated
Ca®* channels also take effect in other organs, such as
brain and heart. It is only the Catsper ion channel that is
exclusively expressed in spermatozoa. The whole-cell
patch-clamp technique applied to mouse spermatozoa,
showed direct electrophysiological characteristics of the
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protein channels. Ca** currents were only detected in the
Catsper channel. Catsper is a sperm- specific, Ca®*-per-
meable, pH-sensitive and weakly voltage-dependent ion
channel that is located in the membrane of the flagellar
principal piece, The presence of an inactive Catsper pro-
tein in male mice induces infertility [6].

The Catsper channel is activated by intracellular
alkaline pH, as shown by whole-cell patch-clamp in
2006 [5]. This channel not only permits Ca®* entry into
spermatozoa under physiological conditions but also al-
lows monovalent cations (Na*, Cs*) or a divalent cation
(Ba®*) to pass into spermatozoa if there is no extracellu-
lar Ca®*. The Catsper channel complex contains four a
subunits (Catsperl—4 [5, 7]) and at least three auxiliary
subunits (Catsper [ (beta), Catsper y (gamma) and
Catsper O (delta) [8]). The first pore-forming Catsper
subunit, Catsperl, was discovered in 2001 [9] and plays
a vital role in spermatozoa motility. Catsperl was de-
tected during a search for sequence homologies to
voltage-gated Ca®* selective channels. Previous studies
showed that there is no Catsperl expression in
Catsper2-lacking mice and also no Catsper2 expression
in Catsperl-lacking mice [7]. These results indicated
that stable expression of Catsperl requires Catsper2,
and vice versa. However, Catsper3 and Catsper4 proteins
are expressed in Catsperl-deletion mice, suggesting that
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stable expressions of Catsper3 and Catsper4 does not
depend on the expression of Catsperl and Catsper2
[10]. Compared with unselected sperm, a much higher
proportion of swim-up selected sperm expresses
Catsperl [11], suggesting that Catsperl also plays a cru-
cial role in sperm swimming. Further studies showed
that Catsper null sperm cells could not be hyperacti-
vated under physiological conditions [1, 12]. Interest-
ingly, depolarization evoked an increase in intracellular
Ca** ([Ca®*]i) in WT sperm cells, but not in Catsperl
null spermatozoa [12]. The phenotypes of Catsper2™'",
Catsper3™'~ and Catsper4~’~ mice were indistinguishable
from Catsperl™’~ mice, and their sperm also lacked the
hyperactivate motility needed for fertilization [7, 13]. A
whole sperm patch clamp of epididymal sperm showed
that Catsper current is absent in Catsperl ", Catsper2™",
Catsper3~~ and Catsper4™’~ mice [6, 7).

In recent years, the study on Catsper channel activa-
tors and inhibitors is surging. Wang HF found that
Cadmium (Cd), a heavy metal and endocrine disruptor
in environment, caused male infertility through reducing
the expression of Catsper proteins [14]. Mannowetz N
also conducted a study that pregnenolone sulfate as a
Catsper activator. However, pristimerin and lupeol which
both are steroid-like molecules can act as contraceptive
compounds through affecting sperm hyperactivation
[15]. Therefore, the Catsper ion channel has been impli-
cated as a potential target for male infertility treatment
and contraception. Nonetheless, the role of Catsper and
its antagonist in these functions have been scarcely re-
ported. Herein, this review focuses on the role of Ca**
signaling in sperm function and the effects of medicines
targeting the Catsper channel.

The structure and localization of the Catsper
channel complex

The Catsper channel complex is encoded by at least seven
genes. The structure and distribution of the Catsper
subunits are all essential for the channel’s function [7].
Catsper1-3 are specifically expressed in the testis, while
Catsper4 is predominantly expressed in the testis, and
there is also weak expression in placenta and lung tissues
[16]. The Catsper family is confined to the principal piece
of mature spermatozoa flagella in humans and animals.
There is no organelle in the principal piece of spermato-
z0a, so researchers speculate that Catsperl—4 are localized
to the principal piece’s plasma membrane and involved in
the regulation of flagella whipping.

Sequence homology of the four Catsper subunits in
the transmembrane region is rare, and the variance
ranges from 16 to 22% [5]. Catsperl has a 21% homologous
identity and 40% homologous similarity to Catsper2.
Furthermore, the Catsper family also has relatively low
sequence homologies among different species. The basic
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information of the seven Catsper genes in human and
mouse are clearly shown in Table 1 and Table 2. The
Catsper protein is widely expressed in mammals (mouse,
rat, dog, human), sea squirt (Ciona intestinalis), and sea ur-
chin (Strongylocentrotus purpuratus). Six transmembrane
segments (S1-S6) are detected in separate pore-forming
Catsper o subunits, forming two individual physiological
active sites: the voltage sensor domain (S1-S4) and pore-
forming domain (S1-P loop- S6). S1-S4 are linked by a
short cyclic structure, and it is noteworthy that there
are several positively charged amino acid residues
(lysine/arginine) in the fourth transmembrane segment
(S4) functioning as a voltage sensor [8]. S5 and S6 are
linked by a short and hydrophobic cyclic structure, and
this region has a conserved homologous sequence
([T] x [D] x [W]), which selectively permits Ca>" entry
through the cell membrane. Catsperl contains six neu-
tral amino acid residues in voltage-sensitive channels,
while Catsper2 contains four such residues and
Catsper3 and Catsper4 contain only two. Four asubu-
nits have coiled proteins in their C ends, forming a
functional tetramer to constitute a whole channel.
Catsper B, a recently discovered protein, contains two
presumed transmembrane-spanning domains. Catsper
B is also the first identified auxiliary protein of the
Catsper channel, expressed predominantly in the testis
and the sperm tail [17].

Catsper regulation and [Ca®"] signaling

Two Ca** channels regulate male fertility: (1) the Orail
channel, which regulate store-operated calcium entry
[18], and (2) the Catsper channel, which is the most
extensively studied Ca>* channels in mammalian sperm
[8, 11]. The sperm-specific Catsper channel controls the
intracellular Ca®>* concentration ([Ca**]i). Catsperl and
Catsper2 null mice exhibit lower amplitudes of flagellar
bends compared to wild-type mice. In Catsperl and
Catsper2 null mice, the flagellar bend and amplitude are
increased from abnormally low levels to normal pre-
hyperactivated levels by increasing the spermospore [Ca*]i
[1]. In most mammals, sperm hyperactivated motility

Table 1 The essential information of Catsper subunits in
human testes

Gene name Chromosome (human) exon Amino acid
Catsperl 11g13.1 12 780
Catsper2 159153 14 530
Catsper3 5g31.1 8 344
Catsper4 1p36.11 M 472
Catsper3 14g32.12 27 1116
Catspery 199132 36 1159
Catsperd 19p13.3 25 798
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Table 2 The essential information of Catsper subunits in
mice testes

Gene name Chromosome (mouse) exon Amino acid
Catsperl 19A 13 686
Catsper2 2E5 16 588
Catsper3 13B1 9 395
Catsper4 4D3 12 442
Catsperf3 12E 27 1109
Catspery 7B1 30 1145
Catsperd 17D 28 805

depends on calcium influx into the sperm cytoplasm either
from the extracellular space or released from intracellular
organelles [3, 4]. Therefore, the Catsper channel controls,
at least, the swimming behavior of sperm.

pH regulates the Catsper ion channel

The Catsper channel is a pH-sensitive ion channel, and a
high pH level is necessary for sperm hyperactivation [19].
Thus, factors that regulate the acid-base properties also
affect the degree of Catsper channel-opening in sperm.
According to previous work, mouse sperm produces a
Ca®* increase in an artificially alkalinized intracellular
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environment [20]. Another studies also showed that pro-
gesterone, prostaglandins and ZP3 could induce capacita-
tion and acrosome reaction in sperm by increasing [Ca*']i
[21, 22]. However, later paper showed that the Ca®* in-
creases in sperm triggered by these bioactive molecules
during acrosome reaction and capacitation are influenced
by pH microenvironment in sperm [21]. Nevertheless, it is
not completely clear how alkalinization influences the
Catsper channel in sperm. H* is the major regulator of
acid-base microenvironment, while Na*/H" exchangers
(NHEs) and Voltage-gated H* channell (HV1) are H'-rela-
tive channels. NHEs import Na® into the plasma mem-
brane and export H" out of the spermatozoa while HV1
removes intracellular H" to maintain the pH value (pHi)
balance in spermatozoa [23]. In addition, Ca®* adenosine
triphosphatase (Ca’*ATPase) pumps remove intracellular
Ca®" from spermatozoa while allowing H* to enter through
the plasma membrane. Correspondently, the Catsper chan-
nel imports Ca®* into spermatozoa to maintain Ca®*
homeostasis [24, 25]. Beyond that, the Na, K-ATPase
(NKA) and Na*/Ca** exchanger (NCX) also influence the
ion milieu in human sperm [26]. In fact, high levels of
intracellular Ca®* and low levels of intracellular H* contrib-
ute to sperm hyperactivation. The relation of different ion
channels with the Catsper channel is described in Fig. 1.

Catsper

cAMP
T
sAC

C0O2+H20—HCO3

sNHE

Na+/Ca2+

Ca2+ATPase exchanger

Hv1

Fig. 1 Regulation of the Catsper channel: Sperm specific K channel (SLOs) maintains flagellar membrane potential. Sperm Na*/H* exchangers
(NHEs) through cyclic adenosine monophosphate (CAMP) play a role on sperm fertility, while CAMP is generated in the process that bicarbonate
(HCO3) activates atypical soluble adenylate cyclase (SAC). The Catsper channel is triggered by increasing intracellular PHi, which depends on sNHE
and Voltage-gated H+ channel 1 (Hv1) channel pumping H* out of sperm. Calcium balance in the sperm is maintained by Na*/Ca** exchanger
and Ca**ATPase exchanger. The Na*/Ca* exchanger exports one Ca** ion out of sperm and allows the entry of three Na* ion, however, Ca**ATPase
is a Ca”*/H" exchanger that removes intracellular Ca®* and permits H* entry into the sperm cell. Both SNHE and Hv1 channels are positive regulator of
the Catsper channel, while Ca?*ATPase is a negative regulator of the Catsper channel
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H* channels

(1) Na*/H" exchangers Na'/H" exchangers (NHEs) are
responsible for the exchange of Na* and H*. Also they
are integral membrane proteins that are widely distrib-
uted in all prokaryotic and eukaryotic organisms. NHEs
includes 13 NHE isoforms encoded by SLC9 gene family,
but only three subtypes (NHE1, NHE5 and sNHE) exist
in sperm cells. Among them, sNHE is a crucial isoform
for fertility [27]. Namely, knockouts of the NHE1 and
NHES5 genes fail to generate infertility in mice, but
sNHE-null or sNHE-disruption mice became infertile
due to the loss of mobility and muotility of spermatozoa
[3]. Increased pH levels by providing ammonium chlor-
ide recovers partial fertility, but a cCAMP analogue com-
pletely recoveres fertility [28]. Furthermore, sNHE
includes a nucleotide-binding domain close to the pro-
tein’s C-terminus [29]. Thus, sNHE isoform is necessary
for fertility, and cyclic nucleotides may control the
Catsper channel and increase pHi by activating sNHE.
Moreover, sNHE helps maintain the alkaline environ-
ment, which allows the Catsper channel to further
regulate hyperpolarization. Aside from maintaining the
pH dynamic equilibrium in sperm, sNHE also regulates
sperm maturity and promotes the absorption of salt
and water in epithelial cell [27, 30]. Interfering with the
function of sNHE leads to infertility. Hence, targeting
sNHE may be a promising strategy for developing novel
contraception methods. Like the Catsper channel,
sNHE is located in the principal piece of the sperm
flagellum [28], suggesting that the Catsper channel can
perceive pHi changes from sNHE to regulate the
Catsper function.

(2) Hvl channel Hvl is another voltage-gated H"
channel. Similar to sSNHE and the Catsper channel, Hvl
is also located in the principal piece of sperm flagella
[31]. In terms of their functions, the major difference
between Hvl and sNHE is that Hvl maintains intracel-
lular alkalinization only by removing intracellular H*
from sperm [23]. Patch-clamp techniques have detected
a negative current from the Hvl channel during the
physiological process of human sperm capacitation [32],
which suggests that Hv1 is associated with sperm capaci-
tation. Interestingly, this negative current is not detected
from the mouse Hv1l channel [32]. In other words, there
is no H" extrusion through Hvl in mouse sperm. We
suspect that sNHE independently accomplishes acid-
base regulation in mouse sperm. If so, knocking out the
Hv1 gene in mouse should not affect fertility, but insuffi-
cient evidence has tested this hypothesis, and the actual
mechanism of Hvl in ouse needs further investigation.

K* channels
As mentioned previously, sNHE-induced exchange of
Na* and H" causes pHi increases, and both sNHE and
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Catsper are voltage-dependent channels. In addition, cell
membrane hyperpolarization correlates with capacita-
tion. K" helps maintain the balance of the membrane
potential in sperm. The K" channels that accomplish this
balance are the SLO3 and Kir channels [33]. Among
them, the SLO3 channel is a sperm-specific and pH-
sensitive K" channel. Similar to the Catsper channel,
SLOj is also strongly related to sperm hyperactivity and
motility [34, 35]. Another crucial function of the SLO3
channel that affects the Catsper channel is to maintain
the current balance of flagella in the spermospore [8].
The sperm resting transmembrane potential is approxi-
mately from -35 to -45 mV, but when K" moves out of
the cell and initiates hyperpolarization, the sperm trans-
membrane potential decreases to -70 mV [36]. A series
of physiological processes are then triggered, including
Na*/H" exchanger activation, sperm capacitation and
sperm binding ZP3 [37].

Ca** channels

There are three Ca”*-related channels (Catsper chan-
nel, Ca**ATPase and Na*/Ca** exchanger) found in
sperm. The Catsper channel is responsible for the
entrance of Ca®* into the spermospore, which promotes
sperm motility. Ca>*ATPase is a Ca>*/H" exchanger
that removes intracellular Ca** and permits H* entry
into the sperm cell different from the Catsper channel
[24, 25]. The Ca®>*ATPase can negatively regulate the
Catsper channel and sperm fertilization. Furthermore,
the Na*/Ca®" exchanger exports one Ca”* ion out of
sperm and allows the entry of three Na" ion, which is
essential to maintain the Ca®* balance of the intracellu-
lar environment [38, 39].

Bicarbonate (HCO3) transporters

HCOj3 is indispensable for sperm capacitation [40],
which is often considered as the beginning of early acti-
vation of sperm motility. For example, as mentioned
above, mouse sperm treated with artificial alkalinization
produces Ca% increasing [20]. The addition of HCOj3;
shows the same effect, while also increases the beat fre-
quency of sperm [41]. These data suggest that transport
of HCOj3 affects sperm motility by increasing the sperm
pHi. Furthermore, HCO3 activates atypical soluble ad-
enylate cyclase (sAC), which increases the cAMP levels
[42], and cAMP-mediated pathways, which increase the
flagella beat frequency [43, 44](cAMP-mediated path-
ways can activate the Catsper channel, as mentioned
below). Thus, another mechanism that HCO3 activates
the Catsper channel is the promotion of Ca®" increases,
which may be through enhancing the generation of
cAMP. In addition, CFTR is a CI” and HCO3 transmem-
brane transporter that is associated with human sperm
capacitation [45]. CFTR controls many transport
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proteins by modulating the cAMP signaling pathway
[46, 47]. Remarkably, suppression of the CFTR trans-
porter affects HCOj3-induced cAMP increases, leading
to decreased PKA activity. Moreover, decreasing CFTR
activity also causes decreased tyrosine phosphorylation
and decreased hyperactivated motility by modulating
cAMP-downstream signaling cascades [48]. HCOj3 trans-
porters are encoded by the SLC4, SLC26 and CFTR gene
families in sperm, and these transporters constitute the
main families of transmembrane proteins that are associ-
ated with the regulation of pH in mammalian cells.
Western blotting, immunocytochemistry, qRT-PCR and
immunoprecipitation data demonstrate that SLC26A3,
SLC26A6, and SLC9A3R1 are detected in the midpieces
of mouse sperm flagella. These proteins interact with
each other to increase pH, during capacitation and
hyperpolarization [49]. On the other hand, HCO3 and
CFTR transporters are located in the midpieces of
flagella, but they do not co-localize with the Catsper
channel. We speculate that HCO3 channels influence
the open or closed state of the Catsper channel indir-
ectly by affecting the acrosome reaction.

HCO3; signals ealy activation of sperm motility. The
generation of HCOj3 is accomplished by carbonic anhy-
drases (CAs) (CO5 + H,O HCO3 + H). Therefore, CAs
are essential for sperm during fertilization. Studies show
that CAs function in three ways: (1) catalyzing the pro-
duction of HCO3, (2) regulating the pHi in sperm, and (3)
regulating the sperm acrosome reaction. CAIl and CAIV
are the core subunits that have catalytic activities, and
knocking out either of them will decrease the sperm mo-
tility, speed of sperm motility and sperm beating fre-
quency [44]. CAII is located in the principal piece of
sperm where Catsper channel is also located. CAIV, on
the other hand, is located within the plasma membrane of
the entire sperm tail. CA inhibitors, such as ethoxyzola-
mide have been administered to human capacitated sperm
and mouse capacitated sperm, and the results showed that
the acrosome reaction increased in human capacitated
sperm, but there were no increases in mouse capacitated
sperm [50]. These results demonstrated that CAs exhib-
ited different functions in human and mouse sperm. How-
ever, little is known about how CAs participate in sperm
fertilization. CAs directly participate in maintaining the
balance of ions during motility. For example, the flagellar
beat frequency is increased when CO, is administered to
the spermatozoa, and this effect is suppressed by ethoxy-
zolamide. Compared with the CA activity in sperm from
wild-type and CAIV™'~ mice, physiological role of CAIV is
to provide sperm, with HCOj3 required for stimulating
SAC [43]. In brief, CAs can affect the alkaline environ-
ment and HCOj3 concentrations in sperm. It is conceiv-
able that CAs may affect the sperm acrosome raction by
modulating the Catsper channel.
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Physiological stimuli that regulate the Catsper channel
How extracellular Ca** enters sperm is poorly under-
stand, but several physiological stimulus associated
with fertilization induce Ca®* entry to increase [Ca**]i
through the Catsper channel. These stimuli include
progesterone, cyclic nucleotides (e.g., cAMP, cGMP),
ZP glycoproteins, BSA and alkaline depolarization
[51]. Collectively, these elements induce a series of
physiological events, including capacitation, acrosome
reaction and fertilization.

Cyclic nucleotide-induced Ca** entry

The cAMP/PKA signaling pathway is used in mammals
to regulate gene transcription. In fact, sperm capacita-
tion is a cCAMP-dependent process that up regulates the
Ca®* concentration and tyrosine phosphorylation levels
[52]. Cyclic AMP is synthesized by many types of adeny-
Iyl cyclases (ACs) that are commonly divided into two
groups: transmembrane adenylyl cyclases (tmACs) and
sAC [19]. Importantly, sAC-mediated cAMP/PKA signal
cascades are essential for sperm capacitation, because
sAC-mutant or sAC-null mice can produce sperm, but
sperm exhibit no forward motility, causing male infertil-
ity. Giving cAMP analogs to sAC-mutant or sAC-null
mice completely restores the previously lost motility, but
the sperm still exhibit no hyperactivity to fertilize eggs
in vitro [53, 54]. Moreover, sAC not only plays a role in
producting cAMP but also participates in other mecha-
nisms involved in the fertilization process. Specifically,
sAC have three roles in fertilization. First, sAC works as
a HCO;3 sensor. The structural domains of sAC
rearrange after being stimulating by HCO3, and sAC is
activated by increasing cAMP levels in sperm [54, 55].
The second function of sAC is to act as a pH sensor.
Previous work showed that sAC regulate acid/base equi-
librium in dogfish sperm [56], and its gene works as a
monitor which reflects the concentration of CO, and
HCO3 to keep an appropriate pH microenvironment
[55]. The last function of sAC is to function as a Ca**
sensor or calmodulin. As a substitute for HCO3, Ca?*
can stimulate a combination of sAC with ATP to pro-
duce cAMP [57, 58]. Cyclic AMP is a second messenger
molecule that is integral to many physiological pro-
cesses, including sperm chemotaxis towards to the egg
and capacitation. A study showed that extracellular
cAMP/cGMP increases the Ca?* concentration [59].
When providing 8-Br-cAMP/cGMP to the spermato-
phore or providing alkaline depolarization to activate the
spermatophore, a Catsper-dependent increase in the
intracellular Ca®* concentration initiates at the principal
piece and speads through the midpiece to finally reach
the head. This process occurs in a matter of seconds.
Furthermore, compared with wild-type sperm, Catsper1-
mutant sperm have lower intracellular ATP levels [59].
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In addition, cGMP signalling function in marine inverte-
brates to transducer chemoattractants to increase in the
[Ca**]i in the flagellum, thereby increases swimming be-
havior during chemotaxis [60, 61]. All of these findings
suggest that cyclic nucleotides induce Ca** influx in the
principal piece, but there is no clear evidence showing
that this cyclic nucleotide-mediated process directly par-
ticipates in inducing [Ca**]i increases. However, by using
cells treated with 8-Br-cNMP, one study has demon-
strated that a cyclic nucleotides modulates progesterone
to ultimately increase [Ca®']i [62].

ZP-induced Ca**entry
An oocytes in the female reproductive tract is coated
with a protective exterior called ZP. The ZP protein sur-
rounding the oocyte is important in the fertilization
process, because only when sperm pass through the ZP
protein to complete the acrosome reaction can partici-
pate in fertilization. In fact, ZP glycoproteins consist of
three subunits in mice: ZP1, ZP2 and ZP3 [63, 64].
Whereas four subunits-ZP1, ZP2, ZP3 and ZP4 exist in
human sperm [65]. How does contact between the
sperm’s acrosome and the egg’s ZP cause an increase in
[Ca**]i?In fact, the sperm needs capacity (which is
achieved by [Ca®']i increases) to pass through the ZP
when the sperm contacts the egg. Exocytosis of secretory
vesicles from the acrosome occur and ultimately, the ac-
rosome reaction is accomplished [66—68]. Early research
reported that in vivo experimental addition of ZP to ca-
pacitated sperm increases [Ca®*]i, while addition of a ZP
inhibitor (i.e., tyrphostin A48, pertussis toxin and 3-
quinuclidinyl benzilate) suppresses ZP-induced acrosome
reactions and reduces the intracellular concentration of
Ca?* in mouse sperm [69-71]. These effects may be re-
lated to signal transduction through G-proteins [72].
Betal, 4 galactosyltransferase-I (GalT-I) is a receptor of
ZP3 that forms a complex of heterotrimeric G proteins.
Sperm are still able to bind ZP3 in GalT-I-deleted mice,
but sperm lose the ability to complete the acrosome reac-
tion and cross the ZP [73]. Compared with sperm in mice
that can complete the acrosome reaction, sperm in human
not only require ZP3 binding but also require ZP4 binding
[65]. In addition, mammalian transient receptor potential
(Trp) proteins are Ca®* channel receptors that are essen-
tial for regulating the entrance of Ca>* into mouse sperm.
Trp is activated by ZP3 activating G-protein and phospho-
lipase C [74]. ZP-induced Ca** entry into sperm help gen-
erate the acrosome reaction and change sperm motility,
and both of these functions are carried out with the help
of Beta-defensin proteins expressed in the epididymis [75].
In recent years, studies have found that the Catsper
channel plays a critical role in ZP-induced Ca®* entry
into mouse sperm. Using patch-clamp techniques, Ca**
currents after 2 min of ZP stimulation were undetectable

Page 6 of 12

in Catsperl-null mouse sperm, showing that the Catsper
channel is necessary for ZP to induce [Ca®*]i increases
and suggesting that the ZP-induced [Ca*']i increases
start from sperm tails and propagate toward the sperm
heads [64].

Progesterone induces Ca®* increases

Progesterone surrounds the egg in the female reproduct-
ive tract and is released by cumulus cells. Progesterone in-
duces Ca®* entry into sperm through the Catsper channel
and thus promotes the acrosome reaction [76, 77]. How
specifically progesterone regulates Ca** concentration has
been deeply investigated. An increase of the [Ca®*]i was
discovered when human spermatozoa were exposed to a
concentration gradient of progesterone to simulate sperm
to approach eggs. Direct addition of Ca®>* to medium
failed to induce this process, but increases in the [Ca*']i
were blocked by adding a sarcoplasmic/endoplasmic in-
hibitor. These data suggest that progesterone-induced Ca®
* influx is mediated by the release of stored Ca** in sperm,
and thus may influence sperm behavior [78]. One mech-
anism of the Catsper channel to increase the [Ca**]i is
through releasing stored Ca”*, and we hypothesize that
progesterone-induced Ca®* influx may be mediated by the
Catsper channel. One study recorded the Catsper currents
from human epididymal and testicular spermatozoa, and
the results showed that the Catsper channel is sensitive to
progesterone early in sperm development and this sensi-
tivity increases gradually to a peak when spermatozoa are
ultimately ejaculated [79]. Protein kinases and phospha-
tases participate in progesterone-induced Ca®" increases:
the addition of PKA inhibitor or protein tyrosine phos-
phatase inhibitors reduced progesterone-induced Ca**
influx and progesterone-induced acrosome rections [77].
In 2010, two research groups proposed that as a proges-
terone receptor in fish sperm, the Catsper channel is
functioning to increase intracellular Ca®* concentrations
[80, 81]. In addition, in 2011, a study showed that proges-
terone is a steroid hormone that activates the Catsper
channel in human sperm by regulating Catsper gene
expression through a well-characterized progesterone
nuclear receptor. Additionally, the Catsper protein is a
non-genomic progesterone receptor [82], and Ca®* influx
is stimulated by alkaline pH and progesterone, but
blocked by the Catsper inhibitors NNC55-0396 and
mibefradil [83].

Other stimuli induce Ca** entry through the Catsper
channel

One additional stimuli that promotes Ca®>* entry into
sperm via the Catsper channel is BSA. BSA plays a role
in sperm capacitation in several mammals. BSA also
induces an increase in the intracellular Ca** concentra-
tion, but this effect is absent in Catsperl-knockout
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sperm. Addition to a EGFP-Catsperl fusion protein re-
covered BSA-induced intracellular Ca** concentration
increases [84]. The changes in calcium concentrations
observed with BSA propagated from the principal piece
to the mid-piece and, ultimately, the head within a few
seconds [59].

Functions of the Catsper protein channel

Catsper was identified in mouse sperm as a putative Ca**
channel in 2001 [9]. The Catsper channel is essential for
male fertilization, especially for some physical processes,
such as sperm hypermotility, egg penetration and the ac-
rosome reaction. As such, the Catsper channel may be a
target for male contraception. The structure of sperm and
oocyte are showed in Fig. 2.

Catsper and male fertility

A plethora of research has proven that the Catsper
channel is essential for both human and mouse fertility.
A routine semen analysis in two consanguineous families
that showed autosomal-recessive male infertility discov-
ered that both families suffer from Catsperl gene
abnormalities. In different patients, asthenoteratozoos-
permia was diagnosed and found to lack the Catsper2
gene [85, 86]. Furthermore, studies have also shown that

Cumulus oophorous+

Zona pellucida«

w:" ‘ ' Nucleus-

Acrosome:

Head:- \
Nucleus«

Neck (with Ca?* store):

Midpiece«

Flagellume
Principal piece (with Catsper channel)-

} End piece:

Fig. 2 The structure of sperm and oocyte: The sperm is constituted
of acrosome, nucleus, neck and flagellum. The oocyte is constituted
of cumulus oophorous, ZP and nucleus. Acrosome reaction is the
start of fertilization
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all four Catsper subunits (Catsperl—4) are integral for
sperm hyperactivated motility and male fertility, but lack
of Catsper3 or Catsper4 has not influence spermatogen-
esis or initial motility of sperm [7]. Moreover, the number
of sperm with progressive motility and progesterone-
induced acrosome reactions is significantly lower in
Catsperl-suppressived groups than that in normal groups
[11]. Normal expression of the Catsper channel is associ-
ated with progressive motility and acrosome reaction,
abnormal channel expression may be involved in the
pathogenesis of asthenozoospermia. Specifically, disrup-
tion of the sSNHE or Catsper2 genes in mice cause male
infertility, with findings of immotile spermatozoa and
failed hyperactivated motility, but no other apparent ab-
normalities [3]. All of these results suggest that Catsperl
and Catsper2 are essential for normal male fertility in
humans or mice. Interestingly, Catsper3 and 4 play an im-
portant role in the acrosome reaction and male fertility
[87], which occurs not only in the testes but also in other
tissues. On the other hand, Catsperl and Catsper2 are
only detected in mammalian testes. Collectively these
results suggest that Catsperl and Catsper2 are highly
specialized flagellar proteins that are more important than
Catsper3 and Catsper4 in sperm. There is no report
showing that mutations of Catpserp or Catspery lead to
infertility [88]. However, these mutations show an abnor-
mal detection of Ca>* currents and hyperactivated motility
in spermatozoa. Finally, Catsperd knockout mice are
infertile [89].

Catsper and contraception

The Catsper channel is a polymodal chemosensor that may
be a target for contraception. Li aimed to explore the
contraceptive potential of the Catsperl transmembrane do-
mains and pore region in vitro in human and mouse sperm.
A significant decrease in sperm progressive motility was
noticed after incubating cells with anti-Catsperl 1gG [90],
demonstrating that Catsperl may be a potential target for
immunocontraception and that the antibody is a useful tool
to study the function of ion channels in sperm. Later, Li
additionally evaluated the contraceptive abilities of two B-
cell epitopes in the transmembrane domains and pore
region of Catsperl in mice. Two predicted B-cell epitopes
of the extracellular part of the transmembrane domains
and pore region of Catsperl were synthesized to immunize
male mice. A significant reduction of fertility was observed
in mating trials, with no evident systemic illnesses or abnor-
mal mating behaviors suggesting that Catsper members
may be effective and viable targets for immunocontracep-
tion. These two epitopes in Catsperl share high identity
between mouse and human and thus may be effective for
regulating fertility in humans [91]. Novel drugs targeting
the Catsper channel are warranted to study their potential
roles in reversibly acting as male contraception.
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Pharmacological targeting of the Catsper channel
With more advanced emerging methods that employ
animal or cell models, more studies testing drugs that
act as Catsper agonists or inhibitors are needed to test
the channel’s potential role as a target for infertility
treatment and male contraception. The drugs that target
the Catsper channel can be divided into three groups ac-
cording to their pharmacological actions. Few of them
are approved by the US Food and Drug Administration
(FDA) for clinical therapies. Most of these drugs are at
the stage of laboratory experiments, while a large por-
tion of them are plant extracts.

Anticholinesterase drugs

In early studies, the organochlorine compounds of
semen in infertile men have been analyzed, and the re-
sults showed that the concentrations of dichlorodiphe-
nyltrichloroethane (DDT) and its metabolites, such as
hexachlorocyclohexane (HCH), P,P’-dichlorodiphenyldi-
chloroethylene (pp’-DDE) and pp’-DDD, are higher in
the semen of infertile men than that in fertile men. It
has been demonstrated that anticholinesterases affect
male fertility by damaging the prostate [92—95]. Another
in-vitro experiment, however, found that P,P'-DDE was
a Catsper agonist that stimulated Catsper channel open-
ing and caused Ca®" influx into sperm [96]. In other
words, P,P'-DDE may improve sperm fertility. Thus, PP,-
DDE is a controversial compound compounds in sperm
fertility.

Ca”* channel blockers

Compounds such as HC-056456, NNC55-0396, nifedi-
pine, nimodipine, quinindium, clofilium, theophylline
and ketamine are all Ca** channel blockers. Among
them, HC-056456 is a novel Ca>* channel blocker, which
is reported to be a unique compound that selectively
targets the Catsper channel. Whole cell patch-clamp re-
cordings showed a lower Catsper current in HC-056456
treated sperm than in untreated sperm, and HC-056456
reversibly prevented the development of hyperactivated
motility of capacitated sperm [97]. This effect is similar
to the findings of Catsper-null sperm, thus, HC-056456
is a promising compound that should be studied further
as a male contraceptive. Both nifedipine and nimodipine
are L-type Ca®* channel blockers [98, 99], and 20 mg/L
of both compounds could induce male infertility. Nifedi-
pine also targets the Catsper chanel and prevents Ca**
influx into sperm, which consequently alters the choles-
tenone content in sperm membranes leading to mem-
brane disruption [10]. NNC55-0396 and mibefradil are
two T-type Ca®" channel blockers that are odorants and
suppress Ca”* signals under standard (physiological)
conditions [100]. NNC (10 mM) and Mib (30 mM)
significantly decrease the percentage of sperm with
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progressive motility and other kinematic parameters, but
the compounds do not affect the percentage of hyperacti-
vated sperm [11]. Other odorants, such as cyclamen and
helional, evoke Ca** signals [51], these compounds are
extracted from plants and bacteria and may act as potent
molecules to treat Catsper-related male infertility. In
addition, whole cell patch-clamp recordings of human
sperm Catsper ion channels showed that quinidine revers-
ibly blocks Ca®>* currents in the Catsper channel.
Clofilium, on the other hand, causes irreversible blockade
of Catsper-mediated Ca®* currents [100-102]. A recent
study showed that ketamine affects human sperm func-
tions as well by inhibiting sperm total motility and pro-
gressive motility via decreased sperm Ca* influx [103].

Other therapeutics that affect the Catsper channel
The mechanisms of some drugs are not clearly under-
stand. For example, emodin inhibits human sperm func-
tion by reducing the sperm [Ca®']i and tyrosine
phosphorylation [104]. Furthermore, some herbal plants,
such as Trigonellae Semen (TS) and Panax ginseng, gen-
erate hyperactivity of sperm by regulating the expression
of the Catsper gene. Extracting pure compounds from
both TS and Panax ginseng may cure oligoasthenosper-
mia [105, 106]. In addition, matrine significantly inhibits
sperm total motility, capacitation linear velocity and the
progesterone-induced acrosome reaction by stimulating
the Catsper channel [107], thus, matrine could be an
potent drug to treat male contraception, While further
clinic trails and systematic evaluations of these molecules
are warranted.

At this point, drugs targeting on the Catsper channel re-
mains in preclinical research stages. More intensive study
of the Catsper channel as a target for treating is needed.

The effects of the Catsper gene promoter on its
transcription

The regulation of the Catsper channel has been system-
atically studied at the protein level, but few researches
reveal the effects of the Catsper promoter regions on the
transcription of the Catsper gene. One group studied the
promoter regions of the Catsper channel in human and
murine sperm. Electrophoretic Mobility Shift Assays
(EMSA) and DNA footprinting techniques were used to
analyze the Catsper gene characteristics. There is a re-
tardant when the Catsper gene and nucleoprotein were
incubated together in vitro, suggesting some nucleopro-
teins have combined with Catsper gene promoter. More-
over, three transcription factor binding sites for SRY,
SOX and CREB have been found in the Catsper pro-
moter regions [108]. This group also demonstrated that
the transcription factors SOX5 and SOX9 regulate the
expression of the Catsperl gene [109]. The role of the
other transcription factors are still unknown. In addition,
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a toxicology study showed that cyclophosphamide (CP),
a antineoplastic drug, could cause male infertility and
lead to a significant reduction of the CREM transcrip-
tion factor within the CREB transcription factor family
[110]. The concentrations of CREM in spermatophores
is 100 times greater than in other organizations of cells
[111]. CREM-knockout mice also induce infertility.
Thus, CREM is an important transcription factor in
regulating the Catsper channel.

Conclusion and perspective
The Catsper channel plays a critical role in male fertility
by controlling Ca®* influx into spermatozoa. Many stud-
ies revealed protein and hormone based regulatory
mechanism of the Catsper channel. In this review, we
discussed how ion channels and stimulants influence the
Catsper channel and induce Ca®* entry into sperm. Thus
far, a variety of Ca®* channels have been found, and
these channels (i, high voltage-gated Ca®* channel
(Cav), cyclic nucleotide-gated Ca®* channel (CNG) and
the TRP channel) are distributed in different subregions
of sperm. In addition, pharmacological evidence shows
that there are N-type, R-type and T-type voltage-gated
Ca®* channels in sperm cells, but these channels do not
directly affect sperm movement and fertility [112]. Only
the Catsper channel directly modulates the physiological
processes of sperm hyperactivation, sperm capacitation,
chemotaxis towards to the egg and the acrosome reac-
tion [8]. Many questions remain unanswered, though.
Catsper is a pH-sensitive ion channel. Some ion chan-
nels or enzymes (i.e., sNHE, CAs and HCO3 transporter)
alter sperm pH by changing the concentration of H*
ions. We know that all these biological molecules affect
the opening degree of the Catsper channel, but are all of
them essential for the Catsper channel? If one of them is
mutated or deleted, can the Catsper channel continue to
function normally? The mechanism of how these bio-
logical molecules interact with each other is not very
clear. Furthermore, the sperm sNHE exchanger also acts
via cCAMP, however, the mechanism has not been clearly
demonstrated. On the other hand, cCAMP, ZP, progester-
one and BSA are proteins that promote Ca®* entry into
Catsper channel. These compounds promote capacita-
tion, the acrosome reaction, sperm maturation and
sperm combining with an egg. What prevents activation
of Catsperl and Catsper2 in heterologous systems, and
what other cell conditions are required to achieve activa-
tion? Other than the ZP, progesteronel, nucleotides and
BSA, what other elements can increase Ca®* influx
through the Catsper channel? All of these questions
need further exploration.

In addition, Catsper channel controls Ca** flux into
spermatozoa and adjusts to hyperactivation of sperm.
Thus, Catsper channel has been implicated as a potential
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target for contraception, and there are a lot of potent
Catsper channel blockers for contraception, such as HC-
056456, NNC55-0396 and so on. Moreover, in 2017,
Zou also found that diethylstilbestrol (DES), a Catsper
activator, facilitated Ca®* flux into human spermatozoa
by Catsper channel [113]. Even so, the studies on
Catsper agonists is still very rare. So it is necessary to
study the mechanism of Catsper channel to research
Catsper-targeted drugs treating male infertility.

The Catsper channel is a unique Ca** channel that is
only detected in testes, so we speculate that Catsper may
have unique factors or protein-protein interactions that
contribute to the unique properties and regulation of the
Catsper channel. In fact, there are few studies about the
channel’s promoter regions, and only four binding
sequences on the Catsperl gene promoter have been
discovered [73]. No studies have described the remain-
der of the Catsper gene, so searching for new Catsper
promoter binding sequences is important for finding po-
tential molecular targets that could be used to treat male
infertility. In addition, at the protein level, there are only
two transcription factors (SOX5 and SOX9) that have
been shown to regulate the transcription of the Catsperl
gene [109]. The SOX protein is a ubiquitously utilized
transcription factor in many organisms, so the existence
of another more specific protein that acts only on the
Catsper promoter sequence may be an important area
for future studies.
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