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Abstract

Background: In vitro maturation of ovarian follicles, in combination with cryopreservation, might be a valuable
method for preserving and/or restoring fertility in mammals with impaired reproductive function. Several culture
systems capable of sustaining mammalian follicle growth in vitro have been developed and many studies exist on
factors influencing the development of in vitro grown oocytes. However, a very few reports concern the
ultrastructural morphology of in vitro grown follicles.

Methods: The present study was designed to evaluate, by transmission and scanning electron microscopy, the
ultrastructural features of isolated mouse preantral follicles cultured in vitro for 6 days in a standard medium
containing fetal calf serum (FCS). The culture was supplemented or not with FSH.

Results: The follicles cultured in FCS alone, without FSH supplementation (FCS follicles), did not form the antral
cavity. They displayed low differentiation (juxta-nuclear aggregates of organelles in the ooplasm, a variable amount
of microvilli on the oolemma, numerous granulosa cell-oolemma contacts, signs of degeneration in granulosa cell
compartment). Eighty (80)% of FSH-treated follicles formed the antral cavity (FSH antral follicles). These follicles
showed various ultrastructural markers of maturity (spreading of organelles in ooplasm, abundant microvilli on the
oolemma, scarce granulosa cell-oolemma contacts, granulosa cell proliferation). Areas of detachment of the
innermost granulosa cell layer from the oocyte were also found, along with a diffuse granulosa cell loosening
compatible with the antral formation. Theca cells showed an immature morphology for the stage reached. Twenty
(20)% of FSH-treated follicles did not develop the antral cavity (FSH non-antral follicles) and displayed
morphological differentiation features intermediate between those shown by FCS and FSH antral follicles
(spreading of organelles in the ooplasm, variable amount of microvilli, scattered granulosa cell-oolemma contacts,
signs of degeneration in granulosa cell compartment).

Conclusions: It is concluded that FSH supports the in vitro growth of follicles, but the presence of a diffuse
structural granulosa cell-oocyte uncoupling and the absence of theca development unveil the incomplete
efficiency of the system. The present study contributes to explain, from a morphological point of view, the effects
of culture conditions on the development of mouse in vitro grown follicles and to highlight the necessity of
maintaining efficient intercellular communications to obtain large numbers of fully-grown mature germ cells.

Background
In vitro culture and maturation of preantral ovarian fol-
licles currently represents one of the most important
tools of investigation in the field of assisted reproduc-
tion. This technique, in combination with cryopreserva-
tion, might be a valuable method for preserving and/or

restoring fertility in mammals with impaired reproduc-
tive function, ultimately achieving in vitro growth of
viable oocytes competent for fertilization [1]. The low
temperature has been demonstrated useful to store
gametes in several mammalian species such as mouse
[2-4], sheep [5,6] and human [for review, see: 7]. After
thawing, one strategy for yielding mature oocytes may
be to isolate small (preantral) follicles (that result toler-
ant to cryodamage) [1] from the cryopreserved ovarian
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tissue and to subject them to subsequent in vitro culture
[2,8-16].
In recent years, numerous in vitro culture systems for

ovarian mammalian follicles and immature oocytes have
been designed to study regulative processes occurring
during folliculogenesis and oogenesis. These studies
contributed to the development of new reproductive
biotechnologies, including clinical application in the
treatment of human infertility [1,15,17-22]. At present,
follicles at various stages of development collected from
both fresh or cryopreserved ovarian tissue have the
potentiality to grow in vitro. However, culture proce-
dures have not been yet optimized. This is partially due
to the heterogeneity of the follicle population present in
the adult ovarian tissue and to the extreme variability of
culture systems and media, including considerable varia-
tions in length of the culture period in relation to differ-
ent animal species [1,18,23].
Fertilizable oocytes and live offspring following

embryo transfer were firstly obtained from mouse pre-
antral follicles, cultured either intact [24] or devoid
of theca cell (TC) layers (oocyte-granulosa cell - GC-
complexes) [25-27]. Then, many papers have been pub-
lished on the culture of small follicles from mouse
[1,28] or large mammals such as pig [29-31], sheep [32],
bovine [17,29,33,34], primates [17] and humans
[14,20,35,36]. These studies pointed out that mouse is
the most handling source for experimental in vitro
model. In fact, mouse oocytes can acquire full develop-
mental competence under very different culture condi-
tions [24,25,37-42]. Thus, setting up an in vitro grown
(IVG) mouse follicle model for the morphological stu-
dies is fundamental for the validation of IVG technolo-
gies and may provide a useful background for the
studies in large mammals [43]. However, up to now
only a few and not comprehensive microscopical studies
concerned with IVG mouse follicles.
During the last decades, electron microscopy provided

significant data on the morphological changes of mam-
malian ovarian follicle development in vivo [44-49]. More
recently, several studies reported a few ultrastructural
data on isolated preantral ovarian follicles of various
mammals subjected in vitro to different culture condi-
tions. These observations focused on early maturation of
human primordial follicles [14], changes of mouse TCs
[50] and rat GC-oolemma contacts [51] or degenerative
aspects of bovine follicles [52] in culture. The ultrastruc-
ture of preantral mouse follicle after cryopreservation
was studied in mouse [2,16]. Other studies concerned fol-
licle ultrastructure in human [53,54] and goat [55,56]
organ cultures. These papers agree with the fact that
transmission electron microscopy (TEM) is an irreplace-
able tool for the fine study of the ovarian follicle morpho-
dynamics. However, a comprehensive and systematic

ultrastructural survey of IVG isolated preantral follicles
grown in vitro in basic conditions is lacking in the litera-
ture. In addition, to our knowledge, the fine surface mor-
phology of IVG follicles as revealed by scanning electron
microscopy (SEM) has been previously addressed only in
a preliminary report of our group [57].
Aims of the present study were: 1. to analyze the

ultrastructural features of IVG mouse preantral follicles
cultured with TC layer, evaluating follicle morphology
by a combined TEM/SEM ultrastructural approach, to
describe fine intracellular structures and three-dimen-
sional details; 2. to compare the ultrastructural features
of the follicles cultured in presence or absence of FSH
supplementation.

Methods
Preantral follicle isolation and culture
Five consecutive experiments were performed. All the
experiments were carried out in accordance with the pro-
cedure described in the guidelines for the care and use of
laboratory animals approved by the Animal Care Com-
mittee of the University of L’Aquila. A total of 20 Swiss
CD1 female mice (Harlan, Udine, Italy), aged 24-26 days,
killed by cervical dislocation, were used in these experi-
ments. Preantral follicles (N = 500) were mechanically
isolated from the ovaries (together with a small clump of
thecal-stromal tissue attached) under a stereo-
microscope using fine needles and collected with a
micropipette. Only those showing a centrally located
oocyte within an intact basement membrane, with no
apparent sign of necrosis were selected for further cul-
ture (N = 350). To this end follicles were individually cul-
tured in 25 μl of culture medium in 96-V-well microtitre
plates (Greiner Labortechnik, LTD), overlaid with 70 ml
of mineral oil (embryo tested, d = 0.84 g/ml). Culture
medium was Alpha Minimal Essential Medium (a-MEM)
supplemented with 1% ITS (insulin, 5 μg/ml; transferrin,
5 μg/ml; and sodium selenite, 5 ng/ml), antibiotics (peni-
cillin, 100 U/ml; streptomycin, 100 mg/ml), and 5% fetal
calf serum (FCS) supplemented or not with highly puri-
fied ovine FSH (100 mIU/ml, National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK)-o-
FSH-19-SIAFP, BIO). All the other chemicals used in
culture were purchased from Sigma Chemical Company
(St. Louis, MO, USA). Both follicles cultured in FCS
alone, without FSH supplementation (FCS follicles, N =
150) and FSH-treated follicles (N = 200) were incubated
at 37°C in 5% CO2 in air and saturated humidity for 6
days. Culture medium was changed every other day.

Electron microscopy
At the end of the culture period, follicles from both
groups (N = 60) were destined to electron microscopy
analysis.
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Thirty (30) follicles were fixed in 1.5% glutaraldehyde
in 0.1 M PBS and then processed for light microscopy
(LM) and TEM according to the procedures described
by Motta et al. [46]. Semi-thin sections, cut with a glass
knife and mounted on glass, were stained with methy-
lene blue and observed by LM. Ultra-thin sections cut
with a diamond knife and mounted onto copper grids,
were double stained with uranyl acetate and lead citrate.
TEM observations were performed by means of Zeiss
EM 10 and Philips TEM CM100 Electron Microscopes.
The remaining 30 specimens were fixed in 2.5% glu-

taraldehyde in 0.1 M PBS and processed for conven-
tional SEM or for digestion of the extracellular matrix
[45,58]. By this method, the cell framework of follicles
was preserved whereas extracellular tissue components,
including collagen fibrils, were removed. Samples were
observed in Philips XL-30-CP and Hitachi S-4000 scan-
ning electron microscopes.

Statistical analysis
Follicular growth was evaluated by phase contrast
microscopy (PCM) measuring follicular and oocyte dia-
meters (in μm) from day 1 to day 6 of culture.
For the image analysis study, sections were made at

the midpoint of the follicles, in order to minimize bias
due to tangential sectioning. The presence and amount
of the transzonal processes (TZPs) of the innermost
layer of the GCs surrounding the oocytes of FCS folli-
cles and FSH-treated follicles was evaluated by TEM on
sections made at several planes (magnification: x6300).
Images were further enlarged on the PC screen, in order
to easily recognize and count TZPs. Values were
expressed in number of visible portions of TZPs per
20 μm2 of zona pellucida area.
Statistical data were shown as mean ± SD. P-value and

statistical significance were evaluated by Student’s t test
[59]. Significance was defined as P < 0.05.

Results
Follicle culture
At the end of a 6 day-culture period, all FCS follicles
underwent a small increase in size (from 160 ± 10 μm
to 200 ± 10 μm; P > 0.05) and did not develop the
antral cavity (AC). By contrast, a high percentage (80%)
of FSH-treated follicles increased significantly in dia-
meter (from 160 ± 10 μm to 420 ± 20 μm; P < 0.05)
and formed variable sized ACs. By PCM the AC
appeared as a translucent area in the GC mass that
could also comprise about half of the follicle. On the
basis of the above observations, follicles were sorted into
three groups: FCS follicles, FSH-treated follicles with a
visible AC (FSH antral follicles), and FSH-treated folli-
cles without a visible AC (FSH non-antral follicles).
Growth was also observed in the germinal component,

as oocyte diameter increased from 62 ± 1 μm up to
73 ± 1 μm (P < 0.01) without differences among the
various groups [39,40].
After culture, 60 intact follicles (20 FCS follicles,

20 FSH antral follicles and 20 FSH non-antral follicles)
were chosen and assigned to electron microscopy exam-
ination. Specifically, 10 follicles from each group were
prepared for LM-TEM analysis whereas the remaining
follicles were destined to SEM examination.

General appearance of IVG follicles at day 6
As seen by LM or SEM, all follicles maintained a round
shape during culture. All follicular main structural ele-
ments were present (TCs, basement membrane, GCs,
zona pellucida and oocyte) (Figure 1). All follicles showed
round shaped and centrally located intact oocytes with a
normally structured zona pellucida (Figure 1a, c, e). FCS
follicles showed 4-5 layers of cuboidal GCs (Figure 1a, b);
FSH-treated follicles showed more numerous GCs dis-
tributed in a higher number of layers (6-8) (Figure 1c, d,
e, f). FSH antral follicles presented fluid-filled spaces
among somatic cells (Figure 1c), while FCS and FSH
non-antral follicles showed a compact granulosa layer
(Figure 1a, b, e, f). All follicles showed an intact but thin,
immature theca layer (Figure 1).

Main ultrastructural features of IVG follicles at day 6
FCS follicles
Oocyte: the nuclear envelope was continuous and irregu-
lar in shape because provided with folds and invagina-
tions (Figure 2a). The ooplasm showed accumulation in
the juxta-nuclear region of cytoplasmic organelles, espe-
cially aggregates of rounded mitochondria and lipid dro-
plets (Figure 2a, b). The ooplasm also showed some
vacuolization. The oolemma was continuous and bor-
dered with microvilli, variable in length and amount.
GCs were closely adhering to the zona pellucida (Figure
2c), which was always apparently normal and crossed by
numerous TZPs originating from the innermost layer of
the GCs and reaching the oolemma (GC-oolemma con-
tacts) (Figure 2c, d). The mean number ± SD per
20 μm2 of TZPs was 29.90 ± 7.08 (Table 1).
Granulosa layer: GCs formed a compact layer around

the oocyte (Figure 2c). In about 40% of samples abun-
dant residual debris of damaged GCs were present
(Figure 2e). In these samples a great number of GCs
exhibited clear signs of cell damage such as: abnormal
distribution of nuclear chromatin, e.g. margination and
karyolysis (Figure 2f); presence of cytoplasmic large
vacuoles and voluminous lipid droplets (Figure 2e, f);
surface alterations mainly characterized by diffuse bleb-
bing of GC membranes revealed by SEM (Figure 2g).
The remaining samples (60%) presented a normal
appearance of GCs, characterized by a nucleus
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containing dispersed chromatin and one or more
nucleoli. In addition, numerous organelles, mainly repre-
sented by mitochondria, were seen in their cytoplasm
(Figure 2c, h).
Theca layer: TCs usually distributed out of the healthy

granulosa basement membrane in one (Figure 3a, b) or,
more rarely, two (Figure 3c) continuous layers. TCs
exhibited a large elongated nucleus with chromatin
aggregates and a normal cytoplasm containing occasional
lipid droplets and a few mitochondria (Figure 3b, c).
FSH antral follicles
Oocyte: the oocytes enclosed in FSH antral follicles
showed an ooplasm provided with numerous scattered
organelles mainly represented by rounded mitochondria
with a few peripheral cristae, lipid droplets, primary and
secondary lysosomes, aggregated or isolated vesicles of
smooth endoplasmic reticulum and the fibrillar lattices

typical of mouse oocytes (Figure 4a, b). The suboolem-
mal area contained sparse cortical granules and elec-
tron-dense particles along with membranes of smooth
endoplasmic reticulum. The oolemma showed abundant
and uniformly distributed microvilli protruding into the
perivitelline space (Figure 4b, c). The innermost GCs
showed areas of detachment from the oocyte, thus
forming a discontinuous cell layer around a well pre-
served zona pellucida (Figure 4a, d). In those areas in
which GCs were in close contact with the oocyte, long
and tortuous TZPs were seen crossing the zona pellu-
cida and reaching the oolemma (Figure 4a, d), where
they intermingled with the microvilli covering the
oocyte (Figure 4e). The GCs of the outer layer did not
show these extensions. From a morphometric analysis
the number of TZPs in FSH antral follicles (mean num-
ber ± SD per 20 μm2 = 6.80 ± 6.20) appeared reduced

Figure 1 General appearance of in vitro grown follicles. FCS follicles (panels a, b); FSH antral follicles (panels c, d); FSH non-antral follicles
(panels e, f). The general appearance of cultured follicles is shown by LM (panels a, c, e) and SEM (panels b, d, f). Panels a-f, O: oocyte; GC:
granulosa cells; TC: theca cells. Panels a, c, e, ZP: zona pellucida; b: basement membrane. Panel c, asterisks: fluid-filled spaces. Bar is: 30 μm
(panel a); 100 μm (panels b, d); 50 μm (panels c, f); 45 μm (panel e).
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in comparison with that found in FCS follicles, and this
difference was highly significant (P < 0.0001) (Table 1).
Granulosa layer: the onset of antral formation caused

loss of contact between GCs (arrows in Figure 4f). In
90% of the samples GC nucleus usually displayed dis-
persed chromatin, one or more nucleoli and a regular

nuclear envelope (Figure 4f); their cytoplasm showed
abundant mitochondria and lipid droplets (Figure 4g).
Outer GCs appeared as irregularly rounded or polygonal
cells (Figure 4h) arranged in numerous concentric
layers, radially situated around the oocyte (Figure 1c, d)
and delimited by a continuous basement membrane
(Figure 5a, b, c). Only in a small percentage of follicles
(10%) the GC population showed obvious ultrastructural
features of cell damage.
Theca layer: in all samples TCs, arranged in one or

two layers (Figure 1c, d; Figure 5a, b) showed a flat and
elongated shape (Figure 5a, d), a large nucleus with
numerous dense chromatin aggregates, a cytoplasm con-
taining scarce lipid droplets (Figure 5a, b, c) and a few
surface microvilli and blebs (Figure 5d).

Figure 2 FCS follicles: oocyte and granulosa cells. Note the presence of juxta-nuclear aggregates of mitochondria (M) and lipid droplets (L) in
the oocyte (panels a, b). Scarce (panel c) or more abundant (panel d) microvilli (m) are present on the oolemma. Damaged granulosa cells
(asterisks, panel e) are seen around the oocyte, sometimes showing chromatin margination in the nucleus (N), vacuoles (V) and lipid droplets (L)
in the cytoplasm (panel f). A diffuse blebbing on the granulosa cell (GC) surface is also observable in panel g. Granulosa cells (GC) with normal
appearance are clearly recognizable in panels c, h. Panel a, N: oocyte nucleus; panels c, d, arrows: granulosa cell cytoplasmic projections crossing
the zona pellucida (ZP) to reach the oocyte (O) surface (transzonal processes). Bar is: 2 μm (panel a); 1.8 μm (panel b); 5 μm (panel c); 52 μm
(panel d); 2.8 μm (panel e); 1.5 μm (panel f); 40 μm (panel g); 2.1 μm (panel h). Panels a-c, e, f, h: TEM; panels d, g: SEM.

Table 1 Morphometric evaluation of the presence of
transzonal processes (TZPs) in IVG mouse ovarian
follicles cultured with or without FSH for 6 days

FCS FSH ANTRAL FSH NON-ANTRAL

N° of TZPs/20 μm2 29.90 ± 7.08a 6.80 ± 6.20b 14.20 ± 8.05c

a,bP < 0.0001; a,c P = 0.0002; b,c P = 0.0334.

Values are expressed as mean ± SD.
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FSH non-antral follicles
Oocyte: the ooplasm showed scattered organelles (Figure
6a) and a few cortical granules placed in suboolemmal
areas (Figure 6b). The oolemma was provided with a
variable number of microvilli (Figure 6a, b, c). The zona
pellucida was ultrastructurally normal (Figure 6a). TZPs
of GCs were found crossing the zona pellucida and
reaching the oocyte (Figure 6a, b, c); however, as far as
the TZP number is concerned, it displayed an inter-
mediate value in FSH non-antral follicles (mean number
± SD per 20 μm2 = 14.20 ± 8.05) in comparison with
the number of TZPs found in FCS and FSH antral folli-
cles, and the difference was statistically significant in
both cases (P = 0.0002 and P = 0.0334, respectively)
(Table 1).
Granulosa and theca layers: overall ultrastructural

morphology of FSH non-antral GCs (Figure 1e, f; Figure
6a, d, e) and TCs (Figure 1e, f; Figure 7a, b, c) was
almost superimposable to that seen in FCS samples.
Table 2 shows a summary of Results.

Discussion
It is well established that gonadotropins are necessary
for antral follicle development in vivo [37-40]. Gonado-
tropins do not influence initiation of follicle growth, but
they are critical to complete follicular development [1].
Even if preantral follicle growth in vivo is considered to
be gonadotropin independent, FSH supplementation in
vitro can be useful in driving initial follicle growth by
exerting a positive effect on follicle survival and oocyte
quality in mouse [23,60,61] and other mammalian spe-
cies [31,34,62-65]. Some studies, however, report con-
trasting results [66,67]. FSH is also essential in inducing
the production and/or effect(s) of factors that may posi-
tively affect follicle growth [68]. Also the modulator
activity of activin on follicular culture [20,61,69] may be
exerted through up-regulation of FSH receptor expres-
sion in GCs at early follicular stages [70].
Our study reports the morphological ultrastructural

characterization of mouse preantral follicles cultured in
vitro with intact theca layers according to the protocol

Figure 3 FCS follicles: theca cells. A thin theca cell layer (TL) is observable by SEM around the granulosa layer (GL) in panel a. Theca cells (TC)
forming one or two-three layers are seen by TEM in panels b, c. Panels b, c, GC: granulosa cells; b: basement membrane. Panel c, M: theca cell
mitochondria; L: theca cell lipid droplets. Bar is: 30 μm (panel a); 1 μm (panel b); 0.5 μm (panel c).
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established by Gosden and collaborators [24]. The
results obtained demonstrated that IVG follicles forming
AC present several ultrastructural features of maturity if
compared with those grown in vivo [71-73]. Such a
positive effect is mediated by the presence of FSH in the
culture medium, as follicles cultured with FCS only
were characterized by the failure of oocyte development
and GC proliferation, and excess of GC degeneration as
well.
Concerns from a data presentation perspective could

arise from the obvious lack of a control, viable oocyte
microscopic analysis from ovarian samples that would be
physiologically comparable to the endocrine environment

which defined these in vitro studies. Therefore, in order
to support the interpretation of the noted structural
changes in oocyte ultrastructure, we had to compare our
in vitro results to the baseline in vivo data that were
found in the literature. However, the changes noted
between FCS (in vitro control) and FSH-treated follicles
clearly demonstrated the supportive influences of FSH on
oocyte viability in vitro.
Following FSH addiction to culture, the most evident

characteristic of maturity shown by the FSH-treated
group was represented by the rearrangement of oocyte
intracytoplasmatic organelles, which appeared uniformly
scattered throughout the cytoplasm. In FCS follicles,

Figure 4 FSH antral follicles: oocyte and granulosa cells. The oocytes (O) contain numerous organelles, uniformly distributed in the ooplasm
(panels a, b, d). Note the presence of scattered cortical granules (arrows) in the suboolemmal area (panel b). Numerous microvilli (m) can be
observed on the oocyte surface (panels b, c). Cytoplasmic projections (arrows) stemming from the inner granulosa cell (GC) layer are seen
crossing the zona pellucida (ZP) (panels a, d) and reaching the oocyte (transzonal processes) (panels d, e). Areas of detachment between inner
granulosa cells and oocyte are also present (asterisks, panels a, d). Outer granulosa cells (GC) appeared irregularly rounded/polygonal and
scarcely adherent each other (panels f, h). Uniformly dispersed chromatin and one or more nucleoli are seen in both inner (panels a, d) and
outer (panels f, g) granulosa cells. Panel b, ZP: zona pellucida. Panel e, O: oocyte. Panel f, arrow: loss of contact among granulosa cells; panel g,
L: lipid droplets in the granulosa cell cytoplasm. Bar is: 3.5 μm (panel a); 1 μm (panel b); 10 μm (panel c); 2 μm (panel d); 9 μm (panel e); 3 μm
(panels f, g); 50 μm (panel h). Panels a, b, d, f, g: TEM; panels c, e, h: SEM.
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most of the organelles are instead condensed into a
crescent region of the cytoplasm close to the nucleus,
probably corresponding to the so-called “paranuclear
complex”. This feature is the ultrastructural correlate of
the Balbiani’s vitelline body and is typical of resting
oocytes [47,74]. The persistence of this structure in
oocytes of growing follicles may be a sign of ooplasmic
immaturity [75] or may be associated with loss of oocyte
viability, at least in the mouse [76]. Other ultrastructural
markers of maturity in the oocytes of the FSH-treated
group (and mostly in FSH antral follicles) were the dis-
tribution of cortical granules, that were seen throughout
the ooplasm and in subplasmalemmal areas [47] and the
numerous microvilli uniformly distributed on the plas-
malemma. During follicular growth, the oocyte surface
displays a gradual increase of microvilli, as clearly
demonstrated by studies on macerated samples in
rodents [44,45]. Microvilli seem to be involved in appo-
sition and fusion of the sperm and oocyte membranes at
fertilization [77,78]. Despite to the evidence of a cyto-
plasmic maturation in the oocytes of FSH-treated folli-
cles, oocyte diameter does not increase up to the final
size, reaching in vitro only 90% of the diameter of the
oocytes physiologically grown in vivo [41,42,73].
By SEM and TEM analyses, in FSH-treated follicles,

the GCs facing the oocyte appeared frequently detached,
forming a discontinuous layer. This feature was particu-
larly evident in FSH antral follicles. Long and tortuous

TZPs crossing the zona pellucida and reaching the
oolemma were present in the areas where GCs adhered
to the oocyte. From a morphometric analysis the num-
ber of TZPs in FSH-treated follicles, both antral and
non-antral, appeared reduced in comparison with that
found in FCS follicles. This reduction was more evident
in FSH antral follicles. In in vivo conditions, TZPs are
very numerous in preantral follicles, forming both com-
municating (gap junctional) and adhesive contacts at the
oolemma. The formation of gap junctions is fundamen-
tal for oocyte growth and maturation [46,79,80] because
it facilitates the transfer of amino acids, glucose metabo-
lites and nucleotides to the growing oocyte [46]. The
TZPs could provide a polarized means that orients the
secretory organelles of the somatic cells [81]. Presence
of zonulae adherentes and desmosomes also guarantee
the mechanical stability of the follicular unit [47,82].
During antral follicle development in vivo, TZPs retract
and maintain fewer terminal connections with the
oocyte than in preantral follicles. This consequently
changes the oocyte transcriptional activity and meiotic
competence. Such a retraction seems promoted by FSH,
through a remodeling of the TZP cytoskeleton [83]. In
our study, the reduction in number of TZPs in FSH-
treated follicles, and particularly in those developing the
AC (FSH antral follicles), well correlates with the data
summarized above. However, in our in vitro model,
such a reduction could be related not only to a

Figure 5 FSH antral follicles: theca cells. Theca cells (TC) forming one or two layers are seen by TEM in panels a, b. Lipid droplets (L) are
visible in the theca cell cytoplasm (panel c). By SEM, the cells of the theca layer (TL) are provided with a few surface expansions (panel d).
Panels a-c, GC: granulosa cells; b: basement membrane. Bar is: 5 μm (panel a); 0.9 μm (panel b); 1.5 μm (panel c); 30 μm (panel d).

Nottola et al. Reproductive Biology and Endocrinology 2011, 9:3
http://www.rbej.com/content/9/1/3

Page 8 of 13



physiological TZP retraction but also to the presence of
areas of detachment, with consequent structural uncou-
pling, between the innermost GC layer and the oocyte.
The small percentage of morphological damages of

GCs of FSH antral follicles can be understood as a phy-
siological event occurring in follicular development in
response to specific apoptotic signals or lack of survival
signals [47]. The increased amount of degenerated fig-
ures such as changes of chromatin and blebbing of
plasma membrane, found in both FCS and FSH non-
antral follicles, are likely due to absence or partial inac-
tivity of FSH, respectively [84]. In agreement with our
ultrastructural data, the rate of apoptosis in the GC
compartment is higher in FCS follicles than in FSH-
treated follicles [42].

One or a few layers of TCs were found around the
cultured follicles belonging to all groups. Theca layers
may be damaged by follicle collection, remaining in a
small number after mechanical isolation [50]. In all
groups TCs presented an elongated and/or flattened
shape with occasional cytoplasmic lipid droplets; these
appearances are typical of immature TCs [47].

Conclusions
We have evaluated a standardized culture system in
which FSH is allowed to stimulate preantral follicle devel-
opment in vitro until the antral stage. Our results provide
the direct evidence that FSH addiction is essential for the
morphological follicle differentiation during in vitro
growth of mouse preantral follicles. Our study clearly

Figure 6 FSH non-antral follicles: oocyte and granulosa cells. In panel a the oocyte (O) contains numerous organelles scattered in the
ooplasm. A variable amount of microvilli (m, panel b) can be found on the oocyte surface (O, panels b, c). Both altered (panel a) and apparently
healthy (panel d) granulosa cells (GC), often provided with surface expansions (panels c, e), are seen in the follicle wall. Panel a, asterisks:
granulosa cell debris. Panels a, b, ZP: zona pellucida. Panel b, black arrow: cortical granule. Panels b, c, white arrows: granulosa cell cytoplasmic
projections (transzonal processes). Panel d, TC: theca cells. Bar is: 2.5 μm (panel a); 0.6 μm (panel b); 26 μm (panel c); 5 μm (panel d); 36 μm
(panel e). Panels a, b, d: TEM; panels c, e: SEM.
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demonstrates that only FSH-treated follicles show
ultrastructural markers of maturity (AC formation, scat-
tered organelles, retraction of TZPs). The different
response to FSH and the delicate ultrastructural differ-
ences observed between FSH antral and FSH non-antral

follicles suggest the existence of a process of commitment
of certain follicles acting at the onset of development.
Uncommitted follicles maintain granulosa compartment
resistant to FSH and unable in forming AC. Other studies
are required to confirm this hypothesis.

Figure 7 FSH non-antral follicles: theca cells. Theca cells (TC) forming one or two layers are seen by TEM in panels a, b. Lipid droplets (L) are
visible in the theca cell cytoplasm (panel b). By SEM, the cells of the theca layer (TL) show a few surface expansions (panel c). Panel a, GC:
granulosa cells; b: basement membrane. Bar is: 1 μm (panel a); 1.2 μm (panel b); 20 μm (panel c).

Table 2 Ultrastructural changes in IVG mouse ovarian follicles cultured with or without FSH (100 mIU/ml) for 6 days

Group N° Shape

Oocyte Granulosa Theca

Organelle
distribution

Oolemma Zona
Pellucida

N° and
arrangement of

layers

Transzonal
processes*

Signs of
degeneration

N° of
layers

FCS 20 Rounded Juxta-nuclear Microvilli +/- Intact 4-5
Compact

++ Present in
40% of
samples

1-2

FSH
ANTRAL

20 Rounded Scattered Microvilli + Intact 6-8
Cell loosening,
with fluid-filled

intercellular spaces
Innermost layer
discontinuous

+/- Present in
10% of
samples

1-2

FSH
NON-

ANTRAL

20 Rounded Scattered Microvilli +/- Intact 6-8
Compact

+ Present in
40% of
samples

1-2

*See Table 1 for details.
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We also demonstrated that, even when FSH is
administered and induces AC formation, not all the
components of the cultured follicles undergo the mor-
phological changes occurring in vivo. In fact, in all
groups, including FSH antral follicles, oocytes grew but
did not reach the full size, as the in vivo counterpart.
The presence in FSH antral follicles of an abnormal, dif-
fuse structural GC-oocyte uncoupling (beyond the phy-
siological TZP retraction) may be the ultrastructural
sign of an altered cross-talk between the gamete and the
surrounding somatic cells. This may be a factor deter-
mining the inability of the oocyte to complete its growth
in vitro. Thus, our study highlights the necessity of
maintaining efficient intercellular communications to
obtain in vitro large numbers of fully-grown mature
germ cells.
Finally, FSH addiction has a limited effect on TC

morphological maturation, which plays a crucial role
in driving regular GC proliferation during preantral
follicle development [85]. The absence of a fully
mature theca layer around cultured follicles could be
mainly related to the lack of blood vessels and stromal
cells to be recruited at the periphery of the follicles.
Consequently the follicles are isolated from systemic
influences and are not exposed to vascular growth fac-
tors and to components of extracellular matrix. Per-
haps a better development of TCs could be obtained
by culturing the follicles within low-stiffness synthetic
extracellular matrices [86] which mimic the in vivo
microenvironment. Also GH addiction during culture
could be useful in sustaining TC proliferation and dif-
ferentiation [50].
In conclusion, several morphological discrepancies

have been evidenced in our study between in vivo and
in vitro development of mouse ovarian follicles, even
when FSH was administered in culture to reduce the
negative influence of the artificial microenvironment on
ovarian follicle growth. Electron microscopy, associated
with other in vivo and in vitro analytic studies, has a
well recognized diagnostic-prognostic role in the assess-
ment of ovarian follicle and oocyte viability during the
application of biotechnological protocols in assisted
reproduction, including those designed to fertility pre-
servation [87,88]. The introduction of ultrastructural
markers may be useful to evaluate the quality of IVG
follicles, and particularly of their oocytes. Our original
observations, as well, may ultimately serve as a model in
research to improve knowledge in folliculogenesis and
oogenesis, and may represent a basic reference for
further morphologic studies on follicular somatic cells,
oocyte and their interaction in in vitro models.
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