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The thrombospondin-1 receptor CD36 is an
important mediator of ovarian angiogenesis and

folliculogenesis

Kata Osz, Michelle Ross and Jim Petrik”

Abstract

number of offspring compared to wild type controls.

disorders.

Background: Ovarian angiogenesis is a complex process that is regulated by a balance between pro- and
anti-angiogenic factors. Physiological processes within the ovary, such as folliculogenesis, ovulation, and luteal
formation are dependent upon adequate vascularization and anything that disrupts normal angiogenic processes
may result in ovarian dysfunction, and possibly infertility. The objective of this study was to evaluate the role of the
thrombospondin-1 (TSP-1) receptor CD36 in mediating ovarian angiogenesis and regulating ovarian function.

Methods: The role of CD36 was evaluated in granulosa cells in vitro and ovarian morphology and protein
expression were determined in wild type and CD36 null mice.

Results: In vitro, CD36 inhibition increased granulosa cell proliferation and decreased apoptosis. Granulosa cells in
which CD36 was knocked down also exhibited an increase in expression of survival and angiogenic proteins.
Ovaries from CD36 null mice were hypervascularized, with increased expression of pro-angiogenic vascular
endothelial growth factor (VEGF) and its receptor VEGFR-2. Ovaries from CD36 null mice contained an increase in
the numbers of pre-ovulatory follicles and decreased numbers of corpora lutea. CD36 null mice also had fewer

Conclusions: The results from this study demonstrate that CD36 is integral to the regulation of ovarian
angiogenesis by TSP-1 and the expression of these family members may be useful in the control of ovarian vascular
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Background

Ovarian folliculogenesis, ovulation, and formation of the
corpus luteum require complex and coordinated inter-
action of numerous autocrine, paracrine, and endocrine
factors to regulate important physiologic processes such as
angiogenesis. Angiogenesis is the formation of new blood
vessels from pre-existing vasculature. In the adult, angio-
genesis is generally quiescent except for the vascularization
required for wound healing. However, the female repro-
ductive tract, including the ovaries, and uterus are unique
as they are adult tissues that undergo cyclic angiogenic
processes to facilitate processes important to reproduction.
An important regulator of ovarian angiogenesis is vascular
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endothelial growth factor (VEGF), which stimulates endo-
thelial proliferation, migration, and survival, and we have
shown that through interaction with its receptor VEGFR2,
it is an important survival factor for extravascular ovarian
cells [1].

Thrombospondin-1 (TSP-1) is a large (450 kDa) multi-
modular glycoprotein encoded by the THSBI gene that
was originally identified as a major component of platelet
a-granules [2,3]. Since then, TSP-1 has been shown to be
an important matricellular protein that mediates cell sig-
naling, wound healing, cell adhesion, and angiogenesis
[4,5]. Of TSP-1's many biological functions, likely the most
notable effect is the inhibition of angiogenesis [6]. The
effects of TSP-1 in tumorigenesis have been well-studied.
Reduced expression of TSP-1 is usually associated with ag-
gressive angiogenesis and enhanced tumour formation [7],
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while TSP-1 over-expression generally results in inhibited
tumour formation and reduced tumour vessel density [8].
During tumour development, TSP-1 is typically inversely
associated with pro-angiogenic markers such as vascular
endothelial growth factor (VEGF) where tumours with a
higher TSP-1:VEGF ratio are typically slower growing,
while tumours that favor VEGF expression are aggressive
and have a higher rate of malignancy [9,10].

CD36 is a multi-ligand glycoprotein receptor, although
it is best known for binding TSP-1. CD36 is known to
act as a transporter and sensor of free fatty acids [11,12]
and a scavenger receptor that binds a number of factors
and participates in the internalization of cells, pathogens,
and various lipoproteins [13]. CD36 is an 88-kDa inte-
gral plasma membrane protein and is expressed by a
variety of cells including platelets, erythrocytes, endothe-
lial cells, monocytes, granulosa, theca, and tumour cells
[14-16]. Likely one of the most well-established func-
tions of CD36 is the inhibition of angiogenesis following
binding to the Type I repeats (TSR) of TSP-1 and -2
[17,18]. Following binding of TSR, CD36 initiates anti-
angiogenic signals through the induction of endothelial
cell apoptosis [19,20]. TSP-1 stimulates CD36 to recruit
non-receptor protein kinases fyn, lyn and yes to the CD36
complex [21]. This recruitment results in the activation of
the kinase and initiation of the p38 mitogen activated pro-
tein kinase (MAPK) pathway, initiation of caspase-3-like
effectors, and ultimately apoptotic cell death [14].

TSP-1 and CD36 are coordinately expressed in granu-
losa and theca cells of rodent [16] and bovine [15] ovaries.
Expression of the ligand and receptor vary throughout the
reproductive cycle and are regulated at least in part by go-
nadotropins [16]. Cyclical expression of TSP-1 is associ-
ated with changes in ovarian angiogenesis, where reduced
expression of the protein accompanies increased perafolli-
cular and luteal angiogenesis during period of follicular
and luteal development [16].

We have shown that TSP-1 Null mice are subfertile
and have altered ovarian morphology highlighted by in-
creased vascularization and disrupted follicle dynamics,
compared with wild-type controls [22]. TSP-1 and its
mimetic peptides have been shown to reduce VEGF
expression, inhibit ovarian angiogenesis, and induce fol-
licle atresia [23,24]. These findings led us to believe that
TSP-1 and pro-angiogenic VEGF had reciprocal inhibi-
tory influences in the ovary and we demonstrated that
TSP-1 bound VEGE, resulting in its internalization and
degradation through the low density lipoprotein receptor
related protein (LRP)-1. However, the extent of the ovar-
ian morphological and functional alterations in the TSP-
1 null mice could not be accounted for exclusively by a
direct interaction between TSP-1 and VEGF. We antici-
pated that in addition to VEGF-mediated effects, CD36
signaling may have specific influences on ovarian function.
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In ovarian tumor development, we demonstrated that
treatment with TSP-1 mimetic peptides inhibited tumor
formation, and that this effect was abrogated when CD36
expression was knocked down [25]. Based on the coordi-
nated expression of TSP-1 and CD36 during ovarian fol-
licle development, and the results from our work in the
ovarian cancer model, we hypothesized that CD36 is an
important mediator in the regulation of ovarian cell func-
tion and folliculogenesis.

Methods

Cell lines and tissue collection

Spontaneously immortalized rat granulosa cells (SIGC)
were generously provided by Dr. Robert Burghardt (Texas
A&M University, College Station, TX) and were cultured
in DMEM/F12 (Gibco BRL), supplemented with 10% FBS,
and 1% Antibiotic/Antimycotic (Gibco BRL). The SIGCs
are derived from primary rat ovarian granulosa cell cul-
tures and grow in culture without undergoing luteiniza-
tion [26]. We have previously shown that these cells
express the CD36 receptor [16]. CD36-null mice and wild
type (WT) C57BL-6 littermates were a generous gift from
Dr. Arend Bonen, Department of Health and Human
Nutrition, University of Guelph, Guelph, ON. All animal
work was carried out in compliance with guidelines estab-
lished by the Canadian Council on Animal Care. For
in vivo tissue collection, approximately 30-week old litter-
mate WT and CD36 "~ mice (n=8/group) were injected
intraperitoneally with 2.5 IU PMSG (Sigma) to initiate a
synchronous follicular wave. 48 hr after injection, mice
were euthanized via CO, asphyxiation and ovaries were
collected at the late antral/preovulatory phase of the
cycle and either flash frozen for protein collection, or
fixed overnight in 10% neutral buffered formalin.

CD36 knockdown in SIGC

miRNA construct: The following complementary single
stranded oligonucleotides were synthesized by Sigma-
Aldrich: Rmi615640_top_cd36 - TGCTGTTCCTTGG
CTAAATAACGAACGTTTTGGCCACTGACTGACGT
TCGTTATAGCCAAGGAA.

Rmi615640_bot_Cd36 - CCTGTTCCTTGGCTATAA
CGAACGTCAGTCAGTGGCCAAAACGTTCGTTATT
TAGCAAGGAAC.

Oligonucleotide strands were annealed and ligated into
pcDNA 6.2-GW/EmGFP-miR vector (Life Technologies)
then transformed into TOP10 cells (Life Technologies)
according to the manufacturer’s instructions. In addition
to the CD36 knockdown oligonucleotides, scrambled
sequence oligos with similar G/C content (Life Tech-
nologies) were also used as recommended.

Plasmids were purified by the Qiagen plasmid purifica-
tion mini kit. Plasmids were sequenced (Laboratory Ser-
vices, University of Guelph) to confirm the sequence
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(p < 0.05) between WT and CD36 KD groups.

Figure 1 Expression of survival factors and the effects of the TSP-1 mimetic peptide ABT-898 in vitro. A. SiRNA inhibition reduced
expression of CD36 in spontaneously immortalized rat granulosa cells (SIGC) in vitro, as observed using brightfield/darkfield immunofluorescence
overlay and Western blotting. B. Western blotting revealed that CD36 knockdown cells had increased expression of survival factors (VEGF,
PVEGFR2, Bcl-2, and pAkt, compared to WT SIGC, or those transfected with a scrambled RNAi sequence. * - denotes statistically different (p < 0.05)
protein levels in CD36 knockdown cells compared to WT cells or those transfected with a scrambled sequence. C. ABT-898 significantly

(p < 0.005) decreased SIGC proliferation and increased activated caspase-3 expression, while CD36 KD abrogated this effect. # - statistically
different (p < 0.05) proliferation or apoptosis compared to the serum free (SF) treatment within that genotype; * statistically difference

identity of the oligo. 1 x 10°/ml SIGC cells were cul-
tured in DMEM\F12 (Gibco) supplemented with 10%
EBS without antibiotic on 24 well plates. At approximately
70% confluence medium was removed, cells were washed
in PBS, and 500 ul/well 1XOPTI-MEM reduced serum
medium (Gibco) was added. Transfection was achieved
using Lipofectamine2000 (Invitrogen) according to the
manufacturer instructions. Stable cell lines were estab-
lished from single-cell dilution colonies, plated in 10 ug/
ml blasticidin (Invitrogen) for approximately 2 weeks to
ensure elimination of any non-transfected cells. Stable cell
line generation was confirmed with confocal microscopy
to localize plasmid GFP within the SIGCs. To confirm
knockdown, brightfield/darkfield immunofluorescence
overlays with a phase-contrast inverted fluorescence
microscope and Western blot analysis were performed
on WT, Scrambled, and CD36KD SIGC in the log
growth phase (Figure 1).

Hormone assays, ovarian morphometry, and fertility

At the late antral/ovulatory phase of the ovarian cycle,
WT and CD36-\- mice were killed by CO, asphyxiation
and blood was collected in a heparinized syringe via car-
diac puncture and centrifuged at 1,000 x g for 10 min at
4°C. The plasma supernatant samples were collected and
stored at —80°C until assayed. LH was assessed by using
an ELISA kit from Endocrine Technologies (Newark, CA)
(sensitivity, 0.5 ng/ml; intra-assay variation, 7%; inter-assay
variation, 9.8%). FSH was measured by using an ELISA kit
from Biocode-Hycel (sensitivity, 0.2 ng/ml; intra-assay vari-
ation, 4.7%; inter-assay variation, 8.5%). Ovaries were also
collected, fixed in 10% neutral buffered formalin, proc-
essed, embedded in paraffin and 5 um thick sections were
cut throughout the entire tissue with a rotary microtome.
For ovarian morphology assessment, every 5™ slide was
subjected to Hematoxylin/Eosin staining and was used for
counting of follicles and corpora lutea. Pre-antral/antral
follicles and corpora lutea were counted in the 2 groups
of mice (n=6/group). As an index of fertility, ovarian
synchronization was performed in a separate cohort of
WT and CD36-/- null littermate mice (n =6/group).
Mice were injected with 2.5 IU PMSG, followed 48 hr
later with 5 IU hCG (Sigma) to induce ovulation. Mice
were immediately paired with proven male breeder mice

and left together for one week before the male was re-
moved. Mice were monitored for approximately 20 days
following mating and the number of offspring from the
female mice was counted.

Cell proliferation and apoptosis

To identify the role of CD36 in TSP-1 mediated granu-
losa cell proliferation and apoptosis, SIGC were sub-
jected to RNAi knockdown as described above. WT and
CD36 knockdown (CD36 KD) cells were plated in 24
well plate on glass coverslips. At 60% confluence, medium
was changed to reduced serum (1% FBS) DMEM/F12
medium (Gibco) overnight. Cultures were treated with 0,
20, 50 or 100 ng/ml of the TSP-1 mimetic peptide ABT-
898 for 24 hours. Following treatment, cells were rinsed in
PBS and fixed for 1 hour in 10% (vol/vol) neutral buffered
formalin. Cells were then permeabililzed with 1% Triton
X-100 (Sigma) in PBS for 15 min, followed by blocking in
5% BSA/0.1% Sodium Azide in PBS for 10 min. Cells were
then either incubated overnight at 4°C with antibodies
to phosphorylated Histone H3 antibody (proliferation;
1:2000 dilution; Abcam, ab5176) or anti-active Caspase-
3 antibody (apoptosis; 1:500 dilution; Millipore, ab3623)
followed by Alexa-Fluore 594-labeled donkey anti-rabbit
secondary antibody (1:500 dilution, Invitrogen) for 1 hr at
room temperature. After rinsing, cells were stained with
2ug/ml DAPI (Sigma) to counterstain nuclei blue and
mounted on glass slides (SuperFrost Plus, Fisher) with
Prolong Gold antifade solution (Invitrogen). Epifluores-
cence microscopy was used for image acquisition and inte-
grated morphometry software (Metamorph, Burlingname,
CA) was used to quantify the percent immunopositive
cells in follicles without (pre-antral) or with (antral) an
antrum, and in corpora lutea.

Immunohistochemistry

Five micrometer-thick paraffin embedded ovarian tissue
sections from wild-type and CD36™"" mice were incu-
bated overnight at 4°C in a humidified chamber with
rabbit polyclonal anti-VEGF antibody (1:600 dilution;
Santa Cruz Biotechnology, CA, sc152), rabbit polyclonal
anti-VEGFR-2 antibody (1:200 dilution; Cell Signaling,
2479); goat polyclonal anti-TSP-1 antibody (1:600 dilution;
Santa Cruz, sc59887); mouse monoclonal anti-CD31 (1:500



Osz et al. Reproductive Biology and Endocrinology 2014, 12:21
http://www.rbej.com/content/12/1/21

dilution; Abcam; ab28634); or mouse monoclonal anti-
Ki67 antibody (1:500 dilution; Sigma, Oakville, ON,
SAB4501880). The following day, biotinylated secondary
antibody (1:100 dilution, Sigma) was applied for 2 hr at
room temperature (RT), followed by horseradish perox-
idase (Extravidin, 1:50 dilution, Sigma) for 1 hr at RT.
Antigen localization was provided with incubation in
DAB solution (SigmaFast 3,3'-Diaminobenzidine tab-
lets), and tissues were counterstained with Carazzi’s
Hematoxylin, dehydrated, cleared in xylene and mounted
on coverslips. Images were captured using brightfield mi-
croscopy and the percentage of immunopositive tissue
was quantified using a computer-generated thresholding
algorithm and analysis (Aperio, ImageScope) for VEGE,
VEGEFR-2, and TSP-1 immunostaining. For CD31 staining,
blood vessel density was calculated as the percentage of
ovarian tissue comprised of CD31-postive endothelium
using integrated morphometry software (Metamorph,
CA). Ki67 staining in follicular and luteal cells were quan-
tified manually by two independent observers blinded to
whether the slides belonged to WT or CD36 '~ mice.

Western blot analysis

Total cellular proteins were isolated from wild type and
transfected SIGC cells and ovarian tissue from WT and
CD36 '~ mice using standard RIPA buffer containing pro-
tease inhibitor cocktail. Denatured 20ug and 40ug protein
were loaded to 4-15% gradient PAGE gel (Mini protean
TGX Gel, BioRad) and transferred to polyvinylidene fluor-
ide (PVDF) membrane (Millipore), blocked (5% skim milk
in TBST) for 1 hour at room temperature. For in vitro ex-
periments, primary antibodies with disparate molecular
weights were incubated on the pvdf membrane that was
cut around the area of the predicted molecular weight.
Membranes were incubated with VEGF (1:500, Santa
Cruz), TSP-1 (1:200, santa cruz), Bcl-2 (1:500, Novus
Biological), VEGFR2 (1:2000, Cell Signaling), phospho
VEGER-2 (1: 500, Cell Signaling), CD36 (1:400, BD Phar-
mingen), Akt (1:100, Cell Signaling), phosphoAkt (1:500,
Cell Signaling) and B-actin (1:4000, Cell Signaling) over-
night at 4C on a rocking platform. Blots were washed in
TBS with 1% Tween 20 (TBST) and incubated in appro-
priate dilutions of secondary antibodies (anti-rabbit IgG-
HRP; anti-mouse IgG-HRP, Cell Signaling). Reactive
protein was detected with Western Lightning Chemilu-
minescence Reagent Plus (PerkinElmer) on X-ray film
(Kodak ClinicSelect blue). For some blots in which one of
the primary antibodies was similar size to B-actin, the
membrane was stripped using Millipore Re-Blot Plus
MildTM (Millipore) for 15 min at RT, followed by 2
washes of 5% skim milk in TBST before re-probing with
B-actin primary antibody and anti-rabbit secondary anti-
body. Films were imaged and densitometry analysis was
performed using an Alphalnnotech imaging station.
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Statistical analysis

Three replicates of all data were performed and used to de-
termine statistical significance. For immunohistochemistry
experiments, a minimum of 5 fields of view at 200x magni-
fication were used. Statistical analysis was performed using
a one-way ANOVA, followed by Bonferonni’s post-hoc test.
P values are listed in the figure legends.

Results

Knockdown of CD36 causes increased granulosa cell
proliferation and survival

To evaluate the role of CD36 in granulosa cell function, we
inhibited expression of the receptor in granulosa cells using
RNA interference. With the RNA interference, we were
able to reduce SIGC expression of CD36 by approximately
75% compared to WT cells or those transfected with
scrambled oligonucleotide sequence (Figure 1A/B). Fol-
lowing knockdown, SIGCs had increased expression of
the pro-angiogenic proteins VEGF and phosphorylated
VEGEFR2 (Figure 1B). SIGCs also exhibited an increase
in protein levels of the cytoprotective proto-oncogene
Bcl-2 and the pro-proliferative and pro-survival phos-
phorylated Akt (Figure 1B). In in vitro experiments the
Thrombospondin-1 mimetic peptide ABT-898 caused a
significant (p < 0.05) decrease in SIGC proliferation in WT
cells, but there was no change in proliferation in SIGCs
that had CD36 knocked down (Figure 1C). Conversely,
ABT-898 induced SIGC apoptosis in WT cells, but this ef-
fect was abrogated with CD36 knockdown (Figure 1C).

Ovarian morphometry, gonadotropin production and
number of offspring are altered in CD36-\- mice

Serum samples from WT and CD36™"" mice were collected
at the time of euthanasia and subjected to ELISA analysis
for leutenizing hormone (LH) and follicle stimulating
hormone (FSH). FSH levels were significantly (p < 0.05)
higher in CD36 null mice compared to WT controls
(Figure 2A), while LH levels in circulation were signifi-
cantly (p < 0.05) reduced compared to controls (Figure 2A).
When ovarian structures were tabulated, there was a sig-
nificant (p < 0.01) increase in the number of total follicles
(including pre-antral, antral, and pre-ovulatory follicles) in
CD36-\- mice compared to WT controls (Figure 2B).
Conversely, CD36"" mouse ovaries contained signifi-
cantly (p <0.05) fewer corpora lutea than WT mouse
ovaries (Figure 2B). The number of live offspring born
from CD36"" mice was significantly (p <0.05) lower
than those from WT mothers (Figure 2C).

Ovaries from CD36™"" mice have higher expression of
pro-angiogenic and pro-survival factors, compared to
ovaries from WT controls

Mice from both groups had their ovarian cycles synchro-
nized and ovaries were collected at the late antral/pre-
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ovulatory phase of the cycle. Immunohistochemistry
was performed to localize and quantify expression of
pro-angiogenic and pro-survival VEGF and it’s receptor
VEGER-2, as well as TSP-1, which is the glycoprotein
that binds and activates CD36. Ovaries from CD36 "
mice had significantly (p <0.05) higher expression of
VEGF and VEGFR-2 (Figure 3), while levels of TSP-1
protein remained unchanged (Figure 3).

CD36™" ovaries have increased proliferation and
vascularity

Ovaries from WT and CD36 "~ mice collected at the late
antral/pre-ovulatory phase of the ovarian cycle were im-
munostained for Ki67 to quantify cell proliferation in
follicular granulosa cells. Ovaries from CD36 ™'~ demon-
strated a significant (p <0.05) increase in granulosa cell
proliferation in both pre-antral and antral-stage follicles
(Figure 4A). Cellular proliferation in corpora lutea was
not statistically different between groups (Figure 4A).
Immunostaining with the endothelial cell marker CD31
was also performed to quantify changes in ovarian
vascularity. Ovaries from CD36™"" mice had a significant
(p<0.01) increase in microvessel density compared to
WT control mice (Figure 4B).

Discussion

This paper demonstrates the role of CD36 in the TSP-1
mediated effects in ovarian folliculogenesis. Based on the
results of this study, CD36 appears to be an important

regulator of ovarian angiogenesis, and follicular and lu-
teal development. Disruption of expression of CD36 sig-
nificantly alters ovarian morphology and expression of
factors related to ovarian cell proliferation, survival, and
angiogenesis. CD36 is expressed in granulosa and cumu-
lus cells of rodents, bovines [16] and humans [27,28],
although the specific function of the receptor is not
completely understood.

In vitro, CD36 TSP-1 receptors are known to co-localize
with VEGF receptors on cell membranes, and evidence
suggests that these receptors may directly associate with
each other and regulate signaling activity. We showed that
knockdown of CD36 in ovarian granulosa cells resulted in
an increase in expression of phosphorylated VEGFR2. The
three type I repeat region of TSP-1 has been shown to re-
duce VEGFR2 phosphorylation and inhibit VEGF signal
transduction [29] and the association between CD36, 1
integrins, and TSP-1 is thought to be important in mediat-
ing this inhibition [30]. In the CD36 null mice, there was a
significant increase in ovarian blood vessel density com-
pared to WT controls. In these mice, there was an increase
in ovarian expression of VEGF and VEGFR2 and the
in vitro data in this paper suggests that removal of the in-
hibitory influence of CD36 would allow for enhanced
phosphorylation of VEGFR2, resulting in an increase in
peri-follicular and luteal angiogenesis.

Knockdown of CD36 has been shown to increase pro-
liferation and expression of survival and angiogenic in
endothelial and tumor cells [25]. In this study, CD36
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knockdown in vitro resulted in increased granulosa pro-
liferation and survival, which was associated with in-
creased granulosa cell expression of phosphorylated Akt.
Akt phosphorylation is an important promoter of granu-
losa cell proliferation and viability, which are the driving
forces behind follicle growth and maturation [31,32]. In
vitro, the increased expression of phosphorylated Akt
was associated with increased granulosa cell proliferation
and decreased apoptosis. In vivo, CD36 null mice had
increased granulosa cell proliferation and a greater num-
ber of growing follicles, compared to WT controls. Akt
phosphorylation promotes follicle activation and survival
[33] and inhibits follicle atresia [34,35]. Increased activity
of the PIBK/Akt pathway in the absence of CD36 could
also have contributed to the increased number of folli-
cles present in the ovaries of the CD36 null mice.
Thrombospondin signaling has been linked to follicle

atresia previously [15,23,24,36] although the mechanisms
have been unclear. This paper suggests that the PI3/Akt
signaling pathway may be an important mediator of
TSP-1’s effects in the ovary.

Normal function of the ovary is dependent on the tightly
regulated angiogenic mechanisms that facilitate folliculo-
genesis, luteogenesis, and dissemination of the steroid hor-
mones generated within the ovary. Angiogenesis within
the ovary is a balance between and expression of pro- and
anti-angiogenic factors. We have shown that members of
the VEGF family and members of the anti-angiogenic
TSP-1 are coordinately expressed during the ovarian cycle
and have profound impacts on the angiogenic processes
that occur throughout the cycle [15,16]. Within the ovary,
cytokine action causes a downregulation of CD36, which
is necessary to facilitate the explosive angiogenesis that oc-
curs during luteal formation [37]. We showed in this study
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that CD36 null mice had significantly higher ovarian
microvessel density compared to wildtype controls. CD36
appears to be critical in the regulation of physiological and
pathophysiological angiogenesis. CD36 mediated TSP-1
signaling maintains corneal vascularity and CD36 defi-
ciency leads to age-related corneal neovascularization
while activation of CD36 can induce regression of in-
flammatory corneal angiogenesis [38]. CD36 has been
implicated in the regulation of tumor angiogenesis.
TSP-1, and other proteins containing the thrombospon-
din type-1 repeats (TSR), are known to endogenously
inhibit the angiogenesis that occurs to facilitate tumor
growth. CD36 has been shown to be required for the
anti-angiogenic activity of these proteins and is absence
impairs their angiogenesis inhibition and tumor vascu-
larity increases and tumor growth is accelerated [17,39].

The morphological changes in the ovaries in the CD36
null mice somewhat replicate those seen in the condition
of polycystic ovarian syndrome (PCOS) in which there is
an increased number of primary follicles which remain
preovulatory and do not progress to ovulation and for-
mation of the corpus luteum [40]. In our study, CD36
null mice had an increased number of preovualtory folli-
cles, concomitant with fewer corpora lutei, compared to
WT controls. Elevated blood vessel density, and increased
VEGF signaling were seen in the ovaries of the CD36 null
mice and these are hallmarks of the pathogenesis of PCOS
[41,42]. It has been shown that by increasing TSP-1

signaling, ovarian hypervascularization can be reversed as a
method to treat PCOS [43]. Interestingly, CD36 null mice
had elevated serum FSH, with suppressed LH, compared
to WT controls. In classic PCOS, the hyperandrogenism
and elevated GnRH generally results in an increase in the
LH/FSH ratio [44]. In our mice, the elevated FSH may have
been responsible for the increased number of recruited,
but unovulated follicles as FSH is known to stimulate fol-
licle development [45,46] and protect against follicle atresia
[47,48]. ESH is a potent activator of the PI3K/akt signaling
pathway [49] and the elevated circulating FSH seen in the
CD36 null mice may have contributed to the increased akt
phosphorylation observed in the ovaries from these mice.
Reduced circulating LH in the CD36 null mice may have
reduced the ovulatory stimulus, resulting in the increased
number of pre-ovulatory follicles and fewer corpora lutei
seen in these mice. CD36 has also been implicated in the
pathogenesis of PCOS due to its role in regulating metab-
olism. CD36 is expressed in tissues regulated to fatty acid
metabolism, including adipocytes [50]. Women with PCOS
often exhibit higher levels of visceral obesity [51] and ele-
vated CD36 expression in adipose tissue is seen in women
with PCOS [11], further implicating the receptor in the
pathogenesis of this disease. Levels of soluble CD36 are el-
evated in PCOS patients, and they are associated with the
altered insulin sensitivity seen in this disease [52]. The
metabolic profile of the CD36 null mice was not evaluated
in this study, but will be the subject of investigation in the
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future. Transcriptome analysis has been performed on fol-
licular cells from PCOS patients and healthy women.
Haouzi et al. [53] showed that cumulus cells surrounding
the oocyte had differential expression of a number of
growth factors and genes involved in steroid metabol-
ism. Granulosa cell expression of genes involved in in-
flammation, metabolism, and coagulation has also been
implicated in the pathogenesis of PCOS [54,55]. After
review of the gene lists published in the various tran-
scriptome papers, CD36 was not specifically mentioned,
although the cellular process that it is involved in have
been implicated. A closer evaluation and comparison of
CD36 expression in samples from PCOS patients and
healthy women may be warranted.

Conclusions

The results from this study suggest that TSP-1 and CD36
have important functions in the ovary and are potent
regulators of follicular and luteal development, ovarian
angiogenesis, and ovarian function. Disrupted expression
of these proteins may be related to ovarian dysfunction
and their roles in specific ovarian pathologies warrants
further investigation.
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