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Abstract

endometrial RL95-2 cells.

Background: L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as
a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can
increase the number of implantation sites in mice and rats, suggesting an effect at the level of the endometrium.
To this end, this study determined the effect that L-arginine has on apoptosis and cell proliferation in human

Results: L-arginine at physiological (200 micromol/L) and supra-physiological (800 micromol/L) concentrations
increased cell proliferation at days 2 and 4 post-treatment with a dose-dependent effect being observed on day 2.
Additionally, inhibition of nitric oxide (NO) synthase and arginase, which are responsible for the conversion of L-
arginine to NO and polyamines, respectively, reduced the proliferative effect of L-arginine. L-arginine also decreased
the proportion of cells with TUNEL positive nuclei and increased the ratio of cells with healthy mitochondria
compared to cells with a disrupted mitochondrial membrane potential, indicating that L-arginine prevents
mitochondrial mediated apoptosis in endometrial RL95-2 cells. Furthermore, exposure to L-arginine did not affect
total BAD protein expression; however, L-arginine increased the abundance of phosphorylated BAD protein.

Conclusions: In summary, L-arginine added to the culture media at physiological (200 micromol/L) and
supraphysiological concentrations (800 micromol/L) enhanced endometrial RL95-2 cell proliferation through
mechanisms mediated by NO and polyamine biosynthesis. In addition, L-arginine reduced endometrial RL95-2
mitochondrial mediated apoptosis through increased phosphorylation of BAD protein.
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Background

L-arginine is considered to be a conditionally essential
amino acid for healthy mature mammals but an essential
amino acid for young developing mammals [1],
suggesting a role for arginine in tissue growth. Most
dietary sources of protein contain L-arginine; however,
L-arginine is found in abundant quantities in high qual-
ity plant proteins (i.e. soy proteins), and daily intake of
L-arginine for adult humans ranges from 3 to 6 g [2]. In
addition to being incorporated into proteins and being
involved in ammonia detoxification [3], L-arginine also
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serves as a precursor for many molecules that are im-
portant for cellular physiology, including proline, glu-
tamate, creatine, nitric oxide (NO) and polyamines,
making L-arginine one of the most versatile amino acids
[4]. L-arginine is converted to NO through the action of
NO synthase (NOS), while polyamines are generated
through the conversion of L-arginine to ornithine via
arginase [4]. Decarboxylation of ornithine by ornithine
decarboxylase vyields the first polyamine putrescine
which serves as the precursor for the other naturally
occurring polyamines spermidine and spermine through
the action of spermidine synthase and spermine syn-
thase, respectively [4].

Both polyamines and NO have vital roles in cellular
processes and cell signaling. Nitric oxide and polyamines
stimulate cell proliferation and have a positive effect on
progression through the cell cycle [5-11]. Polyamines
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exert their cellular effect through their ability to bind
nucleic acids and proteins [12] and have been
demonstrated to promote an anti-apoptotic state in vari-
ous cell lines [13]. Moreover, NO can stimulate PI3K/
Akt-1 signaling pathways [14-16] which promote cell
survival. The role of L-arginine and its metabolites in
cell signaling has been studied extensively in ovine [9,17]
and porcine [18] trophectoderm cells, with L-arginine
enhancing cell proliferation through mammalian target
of rapamycin (mTOR) related signaling pathways.

Wu et al. [19] reported an unusual abundance of L-
arginine in porcine allantoic fluid, suggesting a role for
this particular amino acid in fetoplacental nutrition.
Moreover, dietary L-arginine supplementation has been
demonstrated to enhance the reproductive performance
of rats [20], pigs [21], and mice [22], and recently, we
have shown that dietary L-arginine supplementation
increased the number of implantation sites in mice [22],
which suggests an effect of L-arginine at the level of the
endometrium. The endometrium has the ability to
catabolized L-arginine in numerous species, including
sheep [23-25], pigs [26], mice [27], rats [20], and humans
[28], due to the presence of NOS and/or arginase
enzymes. Moreover, L-arginine has been reported to
exist in human uterine lumen flushes with the greatest
concentration observed during the proliferative phase
[29], suggesting a possible involvement in endometrial
epithelial cell proliferation.

In the current study we used the human endometrial
epithelial carcinoma cell line, RL95-2, as a model for
endometrial epithelial cells. The RL95-2 cell line
expresses markers found on normal human endometrial
epithelial cells such as progesterone receptors, estrogen
receptors o and [ [30], MUC1 [31], and E-cadherin
[32,33]. Furthermore, the RL95-2 cell line has been used
extensively as an in vitro model for studying the human
endometrial epithelium [30,34-36]. To this end, the ob-
jective of this study was to examine the effect that L-
arginine may have on endometrial cell proliferation and
apoptosis using the established human endometrial epi-
thelial cell line, RL95-2, as an in vitro model for epithe-
lial cells of the human endometrium.

Methods

Cell culture

Human endometrial carcinoma cells (RL95-2; ATCC #
CRL-1671) were acquired from the American Type Cul-
ture Collection (Rockville, MD). Cells were cultured in a
humidified incubator containing 5% CO, using a
complete growth media comprised of DMEM:F12 media
(ATCC, Rockville, MD) supplemented with 10% fetal
bovine serum (FBS; Gibco, Grand Island, NY), 1% peni-
cillin/streptomycin (Gibco, Grand Island, NY), and 0.005
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mg/mL insulin (Sigma-Aldrich, St. Louis, MO) in order
to obtain frozen stocks.

Proliferation assay

RL95-2 cells were transferred to 96 well plates (80,000
cells per well) in growth media for a period of 24 h after
which they were serum and L-arginine starved for an
additional 24 hours in an L-arginine free media (RPMI-
1640 SILAC, Sigma-Aldrich, St. Louis, MO). In the first
experiment, cells were then treated (n = 3 wells per treat-
ment) with either 0 pmol/L, 200 umol/L (physiological),
or 800 pmol/L L-arginine (Sigma-Aldrich, St. Louis,
MO) in a serum-free environment. At two days post-
treatment, cell proliferation was assessed for one plate of
cells, and the media was replenished in the second plate
of cells. Cell proliferation was then assessed in the sec-
ond plate 4 days after the initial treatment. In the second
experiment, cells were treated with 0 pmol/L, 200 pumol/
L, or 800 umol/L L-arginine with or without N-omega
-hydroxy-nor-arginine (Nor-NOHA; Calbiochem-EMD4
Biosciences, Billerica, MA), a polyamine synthesis
inhibitor, in a serum-free environment. The media
was replenished on day 2 post-treatment, and cell
proliferation was assessed on day 4 post-treatment. Add-
itionally, a third experiment examined the role of NO
biosynthesis in endometrial RL95-2 cell proliferation:
cells were treated with either 0 umol/L, 200 umol/L, or
800 pmol/L L-arginine with or without 7-Nitroindazole
(7-NI), a NOS inhibitor, in a serum-free environment. 7-
NI was dissolved in ethanol, and all cells not exposed to
7-NI received an equal amount of ethanol. Cell
proliferation was assessed according to procedures pre-
viously described by Kueng et al. [37]. Briefly, cells were
washed in Dulbeccors PBS (DPBS) and fixed in 3%
glutaraldehyde for 15 min. Fixed cells were washed three
times by submersion in de-ionized water and air dried,
after which they were stained with crystal violet (0.1% in
20% methanol) for 20 min, followed by three washes
with de-ionized water. Crystal violet was eluted using
10% glacial acetic acid, and the optical density was
measured at 590 nm. All experiments were repeated in-
dependently three times.

Detection of DNA fragmentation

RL95-2 cells were transferred to chamber slides (100,000
cells per chamber) in growth media for a period of 24 h,
after which they were serum and L-arginine starved for
an additional 24 hours in an L-arginine free media
(RPMI-1640 SILAC). Cells were then treated (n=1
chamber per treatment) with either 0 pmol/L, 200
pumol/L, or 800 pmol/L L-arginine in a serum-free envir-
onment for 24 hours. Cells were washed with DPBS and
fixed in a solution of 4% paraformaldehyde in PBS for
60 min, washed with DPBS, and incubated with a
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permeabilization solution (0.1% Triton X-100 in 0.1%
sodium citrate) for 2 min on ice followed by two
washes with DPBS. DNA fragmentation was detected
by incubating cells with a FITC-labeled terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) solution (Roche Applied Science, Indianapolis,
IN) at 37°C in a humidified incubator. After 60 min,
cells were washed three times with DPBS, the nucleus
was counter-stained with DAPI (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), and the slides where covered with
a coverslip. TUNEL (ex. 490/20; em. 528/30) and DAPI
(ex. 350/50; em. 457/50) staining were assessed using a
Nikon Eclipse TE 2000-U fluorescence microscope.
Three frames per chamber were acquired, and the pro-
portion of cells that were TUNEL positive was counted.
The entire experiment was repeated three independent
times.

Assessment of mitochondrial membrane potential (AWYm)
RLI5-2 cells were seeded into 12-well plates (750,000 cells
per well) and grown for 24 hours in growth media at
which time they were serum and L-arginine starved for an
additional 24 hours. Cells were then treated (n=3 wells
per treatment) with either 0 umol/L, 200 pmol/L, or 800
umol/L L-arginine in a serum-free environment for 24
hours, followed by incubation with 5,5',6,6'-tetrachloro-
1,1',3,3"-tetraethylbenzimidazole-carbocyanide iodine (JC-
1; Cayman Chemical, Ann Arbor, MI) for 30 minutes at
37°C. Loss of AWm was determined using fluorescence
microscopy (Nikon Eclipse TE 2000-U) and flow
cytometry (Becton Dickinson FACSCalibur). Immediately,
following incubation with JC-1, fluorescence microscopy
was performed using a 490 nm excitation filter, with an
orange emission indicating healthy AWYm which is due to a
potential-dependent aggregation of JC-1 molecules in the
mitochondria. In contrast, a loss of AWm results in the
monomeric form of JC-1 in the cytosol which produces a
green emission. For quantification, JC-1 labeled cells were
harvested using EDTA (0.02% in PBS) and analyzed by
flow cytometry (3,000 cells per sample). Excitation was
achieved with a 488 nm argon laser, and emission fluores-
cence was measured in the FL-1 (530/30 nm) and FL-2
(585/42 nm) channels to determine the proportion of cells
with JC-1 monomers or JC-1 aggregates, respectively.
From this analysis, the ratio of cells with JC-aggregates
compared to cells with JC-1 monomers was determined.
Flow cytometry analysis was repeated three independent
times, and fluorescence microscopy was performed once
to obtain representative images.

Reverse transcriptase real time PCR

RL95-2 cells were transferred to culture dishes (1.0 x 10°
cells per dish) in growth media for a period of 24 h after
which they were serum and L-arginine starved for an
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additional 24 hours in an L-arginine free media (RPMI-
1640 SILAC). Cells were then treated (n =3 culture dishes
per treatment) with either 0 pumol/L, 200 umol/L, or 800
pumol/L L-arginine in a serum-free environment. After 24
hours, cells were washed in cold DPBS, trypsinized, and
stored as pellets at —80°C. Total RNA was isolated (High
Pure RNA Isolation kit; Roche Applied Science, Indianapo-
lis, IN), quantified (Nanodrop 1000; Thermo Scientific,
Wilminton, DE), and reverse transcribed into cDNA
(Transcriptor First Strand cDNA Synthesis; Roche Applied
Science, Indianapolis, IN) using 500 ng of total RNA.

For gene expression analysis, NCBI Primer BLAST
was used to design primers for BAX, BCL2, and 18s
rRNA (Table 1). Real-time PCR (Stratagene MX3005P;
Agilent Technologies, Inc, Santa Clara, CA) was
performed using 0.5 pL of ¢cDNA, a final concentration
of 0.5 uM of each primer, and SYBR Green I Master
Mix (Roche Applied Science, Indianapolis, IN). The PCR
conditions were the following: 5 min at 95°C; 40 cycles
of 30 sec at 95°C; 30 sec at the optimal annealing
temperature (Table 1); 30 sec at 72°C. Relative gene ex-
pression was calculated using the 2°2“T method [38].
The entire experiment was repeated three independent
times.

In cell ELISA and Western-immunoblot detection of BCL2,
BAX, BAD, and p-BAD proteins

In a 96-well plate, RL95-2 cells were cultured (80,000
cells per well) in growth media for a period of 24 h, after
which they were serum and L-arginine starved for an
additional 24 hours in an L-arginine free media (RPMI-
1640 SILAC). Cells were then treated (n=3 wells per
treatment) with either 0 pmol/L, 200 pmol/L, or 800
pumol/L L-arginine in a serum-free environment. After
24 hours, cells were fixed with paraformaldehyde (4% in
PBS). BCL2, BAX, BAD, and p-BAD expression was
assessed using the Pierce Colormetric In-Cell ELISA
kit (Thermo Scientific, Waltham, MA) as per the
manufacturer’s instructions. BCL2, BAX, BAD, and p-
BAD measurements were obtained and normalized to
cell number using the Janus Green Whole-Cell stain
supplied with the kit. The entire experiment was
repeated three independent times. Total protein was
isolated from frozen-thawed RL95-2 cells using complete
RIPA buffer (Santa Cruz Biotech Inc, Santa Cruz, CA).
Isolated protein was resolved onto an SDS PAGE gel and
transferred to a PVDF membrane. The WesternBreeze
Chromogenic kit was utilized for immunodection as per
the manufacturer’s instructions (Life Technologies, Inc.
Grand Island, NY). Primary antibody concentration for
western-immunoblotting were the following: BCL2: 0.004
pg/uL; BAX: 0.004 pg/pL; p-BAD: 0.008 pg/pL; and BAD:
0.001 pg/pL. BCL2 (sc-130307), BAD (sc-8044) and serine-
136 phosphorylated BAD (p-BAD; sc-12969) primary
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Table 1 Primer sequences and characteristics
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Gene GenBank Acc. # Primer sequences (5-3') Annealing T (°C) Amplicon size (bp)
BAX NM_004324.3 S: TCTGACGGCAACTTCAACTG 54.5 155
AS: TTGAGGAGTCTCACCCAACC
BCL2 NM_000633.2 S: CGTCAACCGGGAGATGTCGCC 62.0 132
AS: CTGGGGCCGTACAGTTCCACA
18s rRNA X03205.1 S: AAACGGCTACCACATCCAAG 56.0 188

AS: CCTCCAATGGATCCTCGTTA

S, Sense; AS, Anti-sense.

antibodies were obtained from Santa Cruz Biotechnolgy,
Inc. BAX primary antibody (B3428) was obtained from
Sigma-Aldrich, Inc.

Statistical analysis

The Shapiro-Wilk test was utilized to test the data for
normal distribution. All data were normally distributed
except for cell-proliferation and JC-1 data. Normally
distributed data were analyzed using one-way or two-
way ANOVA, when appropriate, followed by Fisher’s
LSD test for pairwise comparison. Data that tested to be
non-parametric were analyzed by Friedman’s one-way or
two-way non-parametric ANOVA, when appropriate,
followed by Tukey’s HSD test for pairwise comparison.
The threshold of significance was fixed at P < 0.05. Data

are presented as least square means + standard error of
the mean (SEM).

Results

Effect of L-arginine on endometrial RL95-2 cell
proliferation

The presence of L-arginine at physiological (200 pmol/L)
and supraphysiological (800 pmol/L) concentrations
increased (P < 0.05) endometrial RL95-2 cell proliferation at
days 2 and 4 post-treatment with proliferation being
increased by approximately 4-fold on day 4 (Figure 1A).
Additionally, a dose dependent effect of L-arginine on
endometrial RL95-2 cell proliferation was observed on day
2 post-treatment at which time cell proliferation was
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Figure 1 A) Effect of L-arginine on human endometrial RL95-2 cell proliferation; B) Effect of L-arginine and the arginase inhibitor Nor-
NOHA on human endometrial RL95-2 cell proliferation; C) Effect of L-arginine and the NOS inhibitor 7-NI on human endometrial RL95-
2 cell proliferation. Each bar represents the mean + SEM, ab,c,d,e means without common letters are significantly different (P < 0.05).
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greater (P <0.05) for cells treated with 800 pmol/L L-
arginine compared to those exposed to 200 pmol/L.

Inhibitory Effect of nor-NOHA on endometrial RL95-2 cell
proliferation

To test whether polyamines, L-arginine metabolites, are
responsible for L-arginine’s effect on cell proliferation,
cells were exposed to L-arginine and the arginase inhibi-
tor nor-NOHA. As in experiment one, the addition of
L-arginine (200 pmol/L and 800 pmol/L) increased
(P <0.05) endometrial RL95-2 cell proliferation, but this
effect was reduced 2-fold (P < 0.05) with the addition of
800 pmol/L nor-NOHA (Figure 1B).

Inhibitory effect of 7-NI on endometrial RL95-2 cell
proliferation

Cells were exposed to L-arginine and the NOS inhibitor
7-NI to determine if L-arginine enhances endometrial
RL95-2 cell proliferation through NO biosynthesis. Again,
L-arginine (200 pmol/L and 800 pmol/L) increased
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(P <0.05) endometrial RL95-2 cell proliferation, and this
effect on cell proliferation was reduced (P < 0.05) with the
addition of 100 pmol/L of 7-NI (Figure 1C).

Effect of L-arginine on endometrial RL95-2 cell apoptosis
Because of the inverse relationship that exists between
cell proliferation and apoptosis [39], we sought to deter-
mine if L-arginine’s positive effect on cell proliferation
was associated with a concomitant decrease in apoptosis.
The addition of L-arginine (200 pmol/L and 800 pmol/L)
decreased (P <0.05) the proportion of cells that stained
positive for TUNEL by approximately 13-fold, indicating a
reduction in DNA fragmentation and, thus, apoptosis in
the presence of L-arginine (Figure 2A-D).

Effect of L-arginine on mitochondiral membrane potential
(A¥Ym)

Fluorescence microscopy analysis of JC-1 stained endo-
metrial RL95-2 cells revealed that the presence of L-
arginine (200 pmol/L and 800 pmol/L) increased the
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Figure 2 Effect of L-arginine on human endometrial RL95-2 cell apoptosis as assessed by TUNEL assay and fluorescent microscopy.
Representative micrographs of cells exposed to (A) 0 umol/L, (B) 200 umol/L, or (C) 800 pumol/L L-arginine. Cells staining green are TUNEL
positive cells experiencing DNA fragmentation. (D) Percentage of cells staining positive for TUNEL after exposure to either 0 umol/L, 200 pumol/L,
800 pmol/L L-arginine. Each bar represents the mean + SEM,; ab means without common letters are significantly different (P < 0.05).




Greene et al. Reproductive Biology and Endocrinology 2013, 11:15
http://www.rbej.com/content/11/1/15

proportion of cells with healthy AWm, as indicated by
more cells yielding an orange emission upon excitation
(Figure 3A-C). Furthermore, flow cytometry revealed that
the addition of L-arginine to the culture media increased
(P <0.05) the ratio of cells with JC-1 aggregates compared
to cells with JC-1 monomers by approximately 2.5-fold
(Figure 3D), indicating that L-arginine reduces mito-
chondrial membrane potential disruption in endomet-
rial RL95-2 cells.

Effect of L-arginine on BAX and BCL2 gene and protein
expression

The presence of L-arginine at physiological (200 pmol/
L) and supraphysiological (800 umol/L) concentrations
dose-dependently reduced (P < 0.05) the amount of BAX
mRNA expression, with endometrial RL95-2 cells
exposed to 800 umol/L L-arginine expressing the least
(P <0.05) amount of BAX mRNA (Figure 4A). Interest-
ingly, cells exposed to L-arginine also expressed less
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(P <0.05) BCL2 mRNA, and had a lower (P < 0.05) BCL2
to BAX mRNA ratio (Figure 4B and C). Exposure to L-
arginine resulted in a BCL2 to BAX mRNA ratio of ap-
proximately one, while cells not exposed to L-arginine
exhibited a ratio of two. L-arginine at physiological
(200 pmol/L) and supraphysiological (800 pmol/L)
concentrations had no effect on BAX protein expres-
sion (Figure 4D); however, in cells that were not
exposed to L-arginine, BCL2 protein levels were
elevated (P <0.05; Figure 4E). Additionally, cells
exposed to L-arginine had a lower (P <0.05) BCL2 to
BAX protein ratio compared to cells not exposed to
L-arginine (Figure 4F).

Effect of L-arginine on phosphorylation of BAD protein

Because L-arginine did not increase the BCL2 to BAX
mRNA and protein ratio, an alternate mechanism for L-
arginine’s promotion of cell survival and prevention of
apoptosis was investigated. To this end, endometrial

letters are significantly different (P < 0.05).

O

Figure 3 Effect of L-arginine on human endometrial RL95-2 cell mitochondrial membrane potential (AYm) as assessed by JC-1
staining. Representative micrographs of cells exposed to (A) 0 umol/L, (B) 200 pmol/L, or (C) 800 pumol/L L-arginine. Cells staining green (JC-1
monomers) are cells with a disrupted A¥Ym, while cells staining orange (JC-1 aggregates) have a healthy AWYm. (D) Ratio of cells with JC-1
aggregates to cells with JC-1 monomers as assessed by flow cytometry. Each bar represents the mean + SEM, a,b means without common
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Figure 4 Effect of L-arginine on (A) BAX mRNA, (B) BCL2 mRNA, (C) ratio of BCL2 to BAX mRNA, (D) BAX protein, (E) BCL2 protein, and
(F) the ratio of BCL2 to BAX protein in human endometrial RL95-2 cells. Western-immunoblotting of RL95-2 total cell protein for BAX (D) and
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RLI95-2 cells were exposed to 0, 200, or 800 umol/L of L-
arginine to determine total and phosphorylated forms of
BAD, which is a promoter of mitochondrial mediated apop-
tosis when not phosphorylated [40]. L-arginine at 200 and
800 pmol/L did not affect the relative levels of total BAD
protein in RL95-2 cells (Figure 5A). However, the addition
of L-arginine did increase (P <0.05) the relative levels of
phosphorylated (Ser-136) BAD protein and, thus, the ratio
of phosphorylated BAD protein to total BAD protein in
endometrial RL95-2 cells (Figure 5B and C).

Discussion
L-arginine is a versatile amino acid, serving as a precur-
sor for many molecules including NO and polyamines

[4]. The plasma concentration of L-arginine has been
reported to be around 200 pmol/L in humans during the
fed state [4,41]. Therefore, we sought to determine the
effect of L-arginine on endometrial RL95-2 cells at
physiological (200 pmol/L) and supraphysiological
(800 pmol/L) concentrations. The presence of NOS
and/or arginase enzymes in the endometrium of
many species indicates the ability of the endomet-
rium to catabolize L-arginine [20,23-28]. In females,
NO is produced in the endometrium [42] and is
involved in embryo implantation and development
[43-45]. Polyamines are also produced by the
endometrium [46,47] and have been shown to be im-
portant for embryo implantation, as inhibition of
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Figure 5 Effect of L-arginine on (A) total BAD protein, (B) phosphorylated BAD (p-BAD) protein, and (C) the ratio of p-BAD protein to
total BAD protein in human endometrial RL95-2 cells. Western-immunoblotting of RL95-2 total cell protein for BAD (A) and p-BAD (B) yielded
proteins of approximately 25 kDa. Each bar represents the mean + S.EM, a,b means without common letters are significantly different (P < 0.05).
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polyamine
mice [46].

L-arginine has been reported to be present in the uter-
ine flushes of sheep [48], cows [49], rats [50], and
humans [29], with concentrations in human uterine
flushes ranging from 220 umol/L to 330 pmol/L depend-
ing upon the phase of the menstrual cycle [29].
Additional work has revealed that mRNA of the L-
arginine transporters SLC7A1l, SLC7A2, and SLC7A3
are present in ovine uterine luminal epithelial [51]. Fur-
thermore, the positive influence that L-argnine has on
cell signaling, proliferation, hypertrophy, hyperplasia,
and migration of ovine trophectoderm cells [9,17]
suggests that L-arginine is transported into the uterine
lumen to support growth and development of the peri-
implantation embryo.

In addition to supporting the peri-implantation
embryo, L-arginine may also have a direct effect on the
uterine luminal epithelium. Proliferation of the endo-
metrium has been implicated as a vital process which
provides an optimal environment for embryo adhesion
and implantation [52], and this argument is further
supported by the observation that increasing endomet-
rial thickness is associated with improved implantation
rates in humans [53-55]. Interestingly, the uterine
lumen concentration of L-arginine is greatest during
the proliferative phase of the menstrual cycle [29],
suggesting that L-arginine may have a role in the
proliferation of the endometrial epithelium which must
regenerate following menstruation. L-arginine and its
metabolites, NO and polyamines, have a dual role in cell
proliferation and apoptosis. In some cell types, L-
arginine, NO, and polyamines stimulate cell proliferation
and reduce apoptosis [8,9,56,57], yet they inhibit cell
proliferation and promote apoptosis in others [58-61].
Results from the current study indicate that L-argrinine
enhances endometrial RL95-2 cell proliferation at
physiological and supraphysiological concentrations.
Moreover, Nor-NOHA, an arginase inhibitor, and 7-NI,
an NOS inhibitor, reduced the positive effect that L-
arginine had on endometrial RL95-2 cell proliferation.
Conversion of L-arginine to ornithine, via arginase, is
the first enzymatic process involved in polyamine syn-
thesis [4]. Likewise, NOS is responsible for converting L-
arginine to NO [4]. Together, the inhibitory effect that
Nor-NOHA and 7-NI exhibited in the presence of L-
arginine indicates that L-arginine enhances endometrial
RL95-2 cell proliferation through polyamine and NO
mediated pathways, which both have a positive influence
on cell proliferation [5-11].

Cell proliferation is often inversely related to apoptosis
[39,62-64], and a reduction in apoptosis is a contributing
factor in the enhancement of cell proliferation [65].
Therefore, we hypothesized that the enhancement of cell
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proliferation in the presence of L-arginine would be
associated with decreased endometrial RL95-2 cell apop-
tosis. Apoptosis in the endometrium is a key feature of
the human menstrual cycle and aids in maintaining
endometrial homeostasis by eliminating cells from the
functionalis layer during the late secretory phase [66]. In
the functionalis layer of the endometrium, apoptosis
exhibits a cyclic pattern with the least amount being
observed during the proliferative phase followed by an
increase during the secretory phase and the maximum
being observed during menstruation [67,68]. The expos-
ure of endometrial RL95-2 cells to physiological and
supraphysiological concentrations of L-arginine reduced
the proportion of cells that exhibited DNA fragmenta-
tion as assessed by TUNEL assay. Activation of
endonucleases [69] and the subsequent DNA fragmenta-
tion [70] are considered to be hallmark characteristics of
cells undergoing apoptosis. To this end, the current
results demonstrate that the presence of L-arginine
reduces the proportion of endometrial RL95-2 cells ex-
periencing apoptosis. Apoptosis can occur through
either receptor-ligand mediated pathways or mitochon-
drial mediated pathways, with both resulting in DNA
fragmentation [71]. Receptor-ligand mediated apoptosis
requires an external signal, while mitochondrial me-
diated apoptosis occurs through the disruption of the
mitochondrial membrane [71]. As the presence or ab-
sence of L-arginine would represent an intracellular
event rather than receptor mediated extracellular signal-
ing, we hypothesized that L-arginine’s prevention of
apoptosis in endometrial RL95-2 cells is mediated
through the mitochondria. The presence of L-arginine in
the culture media increased the ratio of cells with a
healthy mitochondrial membrane compared to cells with
an altered mitochondrial membrane potential. Thus, the
current study indicates that L-arginine reduces the
incidence of endometrial RL95-2 cell apoptosis by
preventing the disruption of mitochondrial membrane
potential, suggesting a role for L-arginine in the regula-
tion of endometrial epithelial apoptosis.

Mitochondrial membrane potential is highly influenced
by proteins that belong to the BCL2 family [72]. The pro-
apoptotic protein BAX and the anti-apoptotic protein
BCL2 are often studied together as indicators of apoptosis.
In healthy cells, a balance exists in which BCL2 is normally
found imbedded in the mitochondrial membrane [73].
Under apoptotic conditions, activated BAX will embed in
the mitochondrial membrane with BCL2 and disrupt the
mitochondrial membrane potential [73]. Accordingly, we
examined if L-arginine’s prevention of apoptosis is through
a BCL2 and BAX mediated event. Interestingly, the pres-
ence of L-arginine did not increase the ratio of BCL2 to
BAX in endometrial RL95-2 cells. In fact, the BCL2 to BAX
mRNA and protein ratios were higher in endometrial
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RL95-2 cells not exposed to L-arginine which were under-
going apoptosis through a mitochondrial mediated path-
way. Despite the anti-apoptotic properties of BCL2,
upregulation of BCL2 mRNA and protein has been
reported in cells undergoing apoptosis [74]. Moreover,
increased expression of BCL2 protein can lead to disrup-
tion of mitochondrial membrane potential [75], as caspases
can cleave BCL2 into a BAX-like molecule which can serve
as a latent pro-apoptotic stimuli in apoptotic cells [76].

Because exposure to L-arginine did not increase the
ratio of BCL2 to BAX, we hypothesized that L-arginine
might decrease endometrial RL95-2 cell apoptosis
through an alternative mechanism. In addition to BCL2
and BAX, BAD is another member of the BCL2 family
of proteins that affects mitochondrial membrane poten-
tial. The presence of L-arginine in the culture media did
not affect the levels of total BAD. However, L-arginine
increased p-BAD (Ser-136) levels in endometrial RL95-2
cells and increased the ratio of p-BAD to BAD, indicat-
ing that L-arginine enhances the phosphorylation of
BAD protein at serine residue 136 in endometrial RL95-
2 cells. When BAD is phosphorylated at either serine
residue 112 (Ser-112) or 136 (Ser-136), it is bound by
14-3-3 and sequestered in the cytosol [40]. In contrast,
non-phosphorylated BAD interacts with BCL2 and BCL-
XL embedded in the mitochondrial membrane and
inhibits their anti-apoptotic properties [77,78] and causes
release of cytochrome C [79]. In this regard, L-arginine
reduces mitochondrial membrane disruption and, thus,
apoptosis through phosphorylation of BAD in endometrial
RL95-2 cells. BAD protein is phosphorylated at serine resi-
due 136 through the kinase activity of PI3K-dependent
Akt-1 [80]. L-arginine increases phosphorylation, and
therefore the activity, of Akt-1 in ovine trophectoderm cells
[17]. Moreover, NO can stimulate phosphorylation of Akt-1
[14-16], and Akt-1 phosphorylation is also enhanced in cells
with elevated expression of ornithine decarboxylase [81],
the enzyme responsible for converting ornithine to first
polyamine putrescine. Thus, it is likely that the presence of
L-arginine in the culture media increased p-BAD levels in
endometrial RL95-2 cells by influencing Akt-1 phosphoryl-
ation through the action of polyamines and/or NO.

Conclusions
In summary, L-arginine added to the culture media at
physiological (200 pmol/L) and supraphysiological

concentrations (800 pmol/L) enhanced endometrial
RL95-2 cell proliferation through mechanisms mediated
by NO and polyamine biosynthesis and by reducing
endometrial RL95-2 cell apoptosis through the phos-
phorylation of BAD protein. Cell proliferation is an
important process in the human endometrium, as the
endometrial epithelium must regenerate following the
losses experienced during menstruation in preparation

Page 9 of 11

for the attachment and implantation of a potential embryo.
Accordingly, the findings of the present study demonstrate
a role for L-arginine in the regulation of endometrial
growth and apoptosis. Moreover, a supraphysiological
concentration of L-arginine had no negative effects on the
parameters measured, revealing a possible beneficial effect
of dietary L-arginine supplementation on endometrial
growth.
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