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Abstract
The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are 
secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal 
secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male 
reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the 
testis have been investigated for many genes. The recent development of high-throughput next-generation 
sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene 
expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression 
were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal 
models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or 
bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 
genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions 
by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were 
downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine 
action-interfered efferent duct-ligation, W/Wv, and Nell2−/− mice. When genes affected by unilateral and bilateral 
orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically 
downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions 
on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions 
of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, 
and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the 
evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in 
the proximal epididymis by two different testis-derived signaling mechanisms.
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Introduction
The epididymis is a highly coiled epithelial duct constitut-
ing a part of the sperm transport route. After production 
in the testis, the testicular spermatozoa are transported 
through the efferent duct toward the epididymis, where 
sperm undergo further maturation of sperm functions 
such as motility and binding to oocytes necessary for 
their full fertilizing ability [1–4]. If the spermatozoa are 
not properly matured by the epididymis, they will not be 
able to acquire the cellular functions necessary for fertil-
ization, eventually resulting in a significant decrease in 
male reproductive ability.

Such epididymal functions are mediated by the specific 
expressions of various genes. The epididymal expres-
sions of specific genes are often responsible for the physi-
ological functions of the epididymis and eventually the 
downstream sperm maturation [5, 6]. Interestingly, the 
epididymal gene expressions are known to be regulated 
by extra-epididymal or testicular factors. There are the 
endocrine and the non-endocrine signaling mechanisms, 
as signaling systems between the testis and the epididy-
mis. In endocrine regulation, sex steroids originating 
from testicular Leydig cells reach the epididymis through 
the bloodstream. They act on epididymal cells by bind-
ing with androgen or estrogen receptors [7–12]. In non-
endocrine regulation, secreted proteins synthesized by 
the testicular germ cells located inside the seminiferous 
tubule are secreted into the seminiferous fluid and reach 
the epididymis via the reproductive tract by the luminal 
flow [13–15]. The secreted proteins act on epididymal 
cells by binding to their receptors expressed on the cell 
surface of the epididymal luminal epithelium [15–17]. 
Since this type of secretion signaling between the tes-
tes and epididymis acts through the lumen, it has been 
referred to as “lumicrine signaling,” a terminology intro-
duced by Barry T. Hinton [18]. Eventually, these testis-
derived signals regulate the physiological functions of the 
epididymis by modifying gene expressions.

The testicular regulations of the epididymal cell func-
tions and gene expressions can be investigated experi-
mentally; in the early studies, when the testes were 
experimentally removed by orchidectomy (OD) or testis-
epididymis luminal communication was interfered with 
by the efferent duct ligation (EDL), then the epididymal 
protein synthesis, which was monitored by the meta-
bolic labeling using radioisotopes, was critically affected 
[19–21]. In addition to these OD or EDL-treated animals, 
gene-modified animals, in which the expression and 
function of endocrine or lumicrine signaling components 
are genetically ablated, are also available [8, 15–17, 22]. 
By using such animal models, various genes have been 
identified to be expressed in the epididymis in an endo-
crine action-dependent and/or lumicrine action-depen-
dent manner [15, 16, 23–32].

Recently, it has become possible to examine gene 
expression by next-generation sequencing and analyze 
them not only by the expression levels of individual genes 
but with information about the structure, function, and 
evolution of gene products. Such data-driven analyses 
may allow for grouping genes based on their respective 
regulatory mechanisms or extracting the unknown fea-
tures of regulated gene expression for gene groups clas-
sified according to specific criteria. In the present study, 
the gene expressions of the proximal epididymis, sub-
jected to OD or lumicrine action-interfering treatments, 
were investigated through RNA sequencing (RNA-seq) 
and the obtained transcriptomes were subsequently eval-
uated to characterize the endocrine and lumicrine regu-
lations of epididymal gene expression.

Materials and methods
Animals
B6D1F1 male mice were purchased from Japan SLC. 
Unilateral and bilateral ODs were performed as follows. 
Eight-week-old wild-type (WT) B6D1F1 males were uni-
laterally orchidectomized (n = 3), in which the contralat-
eral untreated side served as control. Eight-week-old WT 
B6D1F1 males were bilaterally orchidectomized (n = 3) or 
sham-operated (n = 3), which served as controls. The ini-
tial segment (IS)-caput epididymides were isolated from 
the animals four weeks after OD or sham operation.

Dissection of epididymis
The IS was dissected together with the caput and such 
a tissue dissection was indicated by the description “IS-
caput” as described previously [16, 30]. This is because of 
the difficulty in dissecting IS separately from caput epi-
didymides, especially in mice in which IS differentiation 
is ablated by the experimental treatments.

RNA-seq
Total RNAs were isolated from the isolated IS-caput 
epididymides using RNeasy mini (Qiagen). On-column 
DNase treatment was performed during RNA purifi-
cation using an RNase-free DNase set (Qiagen). The 
amount of RNAs was determined by absorbance at 
260 nm. The RNA-seq of epididymal transcripts was per-
formed as follows: libraries for sequencing were prepared 
from isolated RNAs using a TruSeq stranded mRNA 
sample prep kit (Illumina, #20,020,594) and sequenced 
on a NovaSeq6000 (Illumina) using 101 bp single-ended 
mode. The mapping of the obtained sequence reads 
onto a mouse reference genome (mm10) was performed 
using TopHat ver. 2.1.1 [33]. To calculate fragments per 
kilobase of exon per million mapped reads (FPKM) val-
ues for each gene, Cufflinks ver. 2.2.1 was used [34]. The 
obtained RNA-seq data have been deposited in the Gene 
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Expression Omnibus database under the accession code 
GSE247764.

Transcriptome analyses
The IS-caput epididymal transcriptomes of unilateral 
OD, bilateral OD, and their controls were comparatively 
analysed. The IS-caput epididymal transcriptomes of 
EDL (EDL performed at 10 weeks old and the ipsilat-
eral epididymis was at 14 weeks old) [30], W/Wv, a Kit 
compound heterozygous mutant (14 weeks old) [30], and 
Nell2−/− (14 weeks old) [15] mice were also used for com-
parison (datasets are publicly available from the NCBI 
Gene Expression Omnibus website (https://www.ncbi.
nlm.nih.gov/geo/). The transcriptome data were incorpo-
rated into Microsoft Excel software for further analysis. 
Gene ontology (GO) information was obtained from the 
Mouse Genome Informatics website (https://www.infor-
matics.jax.org/vocab/gene_ontology).

Mouse genes were classified into nine classes, i.e., Cra-
niata, Gnathostomata, Teleostomi, Tetrapoda, Amniota, 
Mammalia, Theria, Euthelia, and others according to the 
emergence of genes during vertebrate evolution, using 
the information provided by NCBI Gene (https://www.
ncbi.nlm.nih.gov/gene).

Drawings
Schematic drawings were generated using Micro-
soft PowerPoint (Microsoft Corporation). Plot repre-
sentations, heatmap representations, and bar graphs 
were generated using Microsoft Excel 2019 (Microsoft 
Corporation).

Statistical analysis
Two-tailed t-tests under the assumption of unequal vari-
ances were performed using Microsoft Excel 2019.

Results
Comparative transcriptome analyses of orchidectomized 
mouse proximal epididymis
A schematic representation of endocrine and lumicrine 
actions from the testis to the epididymis is represented 
in Fig. 1. In the bilateral OD, both testes are removed and 
both endocrine and lumicrine actions are ablated. In the 
unilateral OD, the unilateral testis is removed, then the 
ipsilateral lumicrine and endocrine actions are ablated 
but the contralateral testis-derived endocrine action is 
expected to be still active. In the EDL, only lumicrine is 
ablated because the testis-epididymis luminal connection 
is interfered with. Since W/Wv and Nell2−/− mice lack 
germ cells that secrete lumicrine ligands and lumicrine 
ligand NELL2, respectively, only lumicrine but not endo-
crine signaling is dysfunctional in these animals [15].

The unilateral or bilateral OD was performed at 8 
weeks old for 4 weeks and the IS-caput epididymides 

were isolated for RNA isolation and the subsequent tran-
scriptome analysis. For unilateral OD, contralateral epi-
didymides were used as controls. For bilateral OD, the 
epididymides of sham-operated animals were used as 
controls. The obtained RNA-seq results were summa-
rized in Supplementary Data File 1. The IS-caput epi-
didymal gene expression in the orchidectomized animals 
and those in their control animals were plot-represented 
(Fig. 2A-B). The unilateral OD did not significantly affect 
the gene expression of the contralateral side epididymis, 
as evidenced by the comparison between the sham-oper-
ated control and the contralateral side control of unilat-
eral OD (Fig. 2C). For the comparative study, the IS-caput 
transcriptomes of EDL, W/Wv, and Nell2−/− animals, all 
of which were previously done by the author based on the 
experimental procedure identical to that employed in the 
present study [15, 30], were also shown (Fig. 2D–F).

In the bilateral OD treatment, 431 genes were sig-
nificantly downregulated (Table  1). Among such genes 
downregulated in bilateral OD, 27.8 ∼ 41.5% are com-
mon with those with unilateral OD (154 genes), EDL 
(179 genes), W/Wv, (165 genes), and Nell2−/− (120 genes). 
The proportion of unique genes whose expression was 
significantly downregulated in the bilateral OD ani-
mals was 50.3% (217 genes), which was very high com-
pared with those in unilateral OD (14.8%), EDL (22.1%), 
W/Wv (9.0%), and Nell2−/− (10.4%) (Table 1). In the uni-
lateral OD, 283 genes were significantly downregulated 
(Table  1). Among them, 49.1 ∼ 77.0% are common with 
those with bilateral OD (154 genes), EDL (218 genes), 
W/Wv, (187 genes), and Nell2−/− (139 genes). The pro-
portion of unique genes whose expression was signifi-
cantly downregulated in the unilateral OD animals was 
14.8% (42 genes). Thus, while many genes were com-
monly downregulated among experimentally treated 
animals including bilateral OD and unilateral OD, there 
were a considerable number of genes specifically down-
regulated by bilateral OD.

The fold changes of gene expression in the bilateral and 
unilateral OD-treated IS-caput epididymides were shown 
by heatmap representation (Fig.  3A). For genes signifi-
cantly downregulated in bilateral OD-treated IS-caput 
epididymis (fold change < 0.1, and t-test P value < 0.05), 
their expression fold changes were compared with those 
of unilateral OD, EDL, W/Wv, and Nell2−/− animals 
(Fig.  3B and Supplementary Data File 2). Among genes 
significantly downregulated in the bilateral OD animals, 
there are many genes not affected or only moderately 
downregulated in the unilateral OD, EDL, W/Wv, and 
Nell2−/− animals, endorsing the above observation that a 
larger number of genes were downregulated in the bilat-
eral OD mice compared with unilateral OD, EDL, W/Wv, 
and Nell2−/− ones.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.informatics.jax.org/vocab/gene_ontology
https://www.informatics.jax.org/vocab/gene_ontology
https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene
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For upregulated genes, there are 196 and 69 genes 
upregulated by bilateral OD and unilateral OD, respec-
tively (Table 2). However, among such upregulated genes, 
only 1 ∼ 3 genes were common between genes upregu-
lated in the IS-caput epididymis of EDL, W/Wv, or 
Nell2−/− mice, implying that the observed upregulations 
are resulting from experimental variation than from a 
common mechanism.

Collectively, these results indicate that unilateral OD, 
EDL, W/Wv, and Nell2−/− animals are similar whereas 
the bilateral OD animals are rather unique in their gene 
downregulation. Hereafter in the present study, unilateral 
OD is therefore treated as a variation of the lumicrine 
action-interfering treatments (see also Discussion).

The feature of gene products downregulated in endocrine 
and/or lumicrine actions-interfered mouse epididymis
The expression of many genes was influenced differently 
by the bilateral OD and lumicrine action-interfering 
treatments. To investigate whether there are common 

characteristics shared among such genes whose expres-
sions were affected, genes were classified based on their 
function or their evolution. Subsequently, the total 
expressions of genes classified in such a manner were 
compared between the experimental groups.

Using GO information, genes were selected based on 
the localization of the encoded proteins (extracellular, 
plasma membrane, cytosol, mitochondrion, endoplas-
mic reticulum, Golgi apparatus, and nucleoplasm). Gene 
expression was then accumulated for each classifica-
tion group and compared between experimental groups 
(Fig.  4A and Supplementary Data File 3). An apparent 
reduction by bilateral OD was observed in GO “extra-
cellular” genes. In other GO classifications, prominent 
downregulation or upregulation of the accumulated gene 
expression was not recognized in the specific experimen-
tal group.

Transcriptomes can be analyzed not only based on 
gene functions but also based on gene evolution. Genes 
were therefore classified into nine evolutional classes, i.e., 

Fig. 1  Testis-derived endocrine and lumicrine actions on the epididymis. (A) A schematic representation of testis-derived endocrine and lumicrine ac-
tions on the epididymis. IS, initial segment; Cap, caput; ED, efferent duct; VD, vas deferens. Blue arrows indicate the lumicrine action through the male 
reproductive tract. Red arrows indicate the endocrine action through the bloodstream. (B) A summary of experimental conditions and their effects on 
endocrine and lumicrine actions
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Craniata, Gnathostomata, Teleostomi, Tetrapoda, Amni-
ota, Mammalia, Theria, Euthelia, and others (evolution-
ally newer genes), and the accumulated gene expressions 
for each class were compared between experimental 
groups (Fig.  4B and C and Supplementary Data File 
4). There was no critical difference in the accumulated 
expression of genes acquired before Tetrapoda between 
the experimental groups, whereas apparent reductions 
in the accumulated expression by the experimental treat-
ments were observed in genes acquired since Amniota. 
The accumulated expressions of Amniota-specific genes 
were reduced in mice with bilateral OD and mice with 

lumicrine action-interfering treatments such as unilat-
eral OD, EDL, W/Wv, and Nell2−/− mice. For Mammalia- 
and Theria-specific genes, their accumulated expressions 
were also reduced similarly in the unilateral OD, EDL, 
W/Wv, and Nell2−/− animals, whereas the reduction in 
the bilateral OD was even greater. Decreased expression 
was also observed in the genes of For Euthelia-specific 
and evolutionally newer genes, the reduction of accumu-
lated gene expression was apparent only in the bilateral 
OD animals but not prominent in those of unilateral OD, 
EDL, W/Wv, and Nell2−/− animals. Thus, the expres-
sions of genes acquired since Amniota were affected by 

Table 1  Comparison of downregulated genes (fold change < 0.1, and t-test P < 0.05) in orchidectomized and lumicrine signaling-
deficient mouse IS-caput epididymides

Fold change < 0.1 P < 0.05 Unique Common with
Bilateral OD Unilateral OD EDL W/Wv Nell2−/−

Bilateral OD 431 217 (50.3%) 154 (35.7%) 179 (41.5%) 165 (38.3%) 120 (27.8%)
Unilateral OD 283 42 (14.8%) 154 (54.4%) 218 (77.0%) 187 (66.1%) 139 (49.1%)
EDL 476 105 (22.1%) 179 (37.6%) 218 (45.8%) 311 (65.3%) 188 (39.5%)
W/Wv 366 33 (9.0%) 165 (45.1%) 187 (52.2%) 311 (85.0%) 187 (51.1%)
Nell2−/− 231 24 (10.4%) 120 (52.9%) 139 (60.2%) 188 (81.4%) 187 (81.0%)

Fig. 2  RNA-seq analyses of orchidectomized and lumicrine signaling-deficient IS-caput epididymis. A–C, RNA-seq of sham-operated control vs. bilateral 
OD (A), contralateral side control vs. ipsilateral side in unilateral OD (B), sham-operated control vs. contralateral side control in unilateral OD (C). D-F, RNA-
seq of WT vs. EDL (D), WT vs. W/Wv (E), and WT vs. Nell2−/− (F). FPKM values are plotted. Statistically significantly downregulated (fold change < 0.1, and 
t-test P < 0.05) and upregulated (fold change > 10, and t-test P < 0.05) genes are represented in green and yellow, respectively
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Table 2  Comparison of upregulated genes (fold change > 10, and t-test P < 0.05) in orchidectomized and lumicrine-deficient mouse 
IS-caput epididymides

Fold change > 10 P < 0.05 Unique Common with
Bilateral OD Unilateral OD EDL W/Wv Nell2−/−

Bilateral OD 196 180 (91.8%) 7 (3.6%) 4 (2.0%) 3 (1.5%) 5 (2.6%)
Unilateral OD 69 57 (82.6%) 7 (10.1%) 2 (2.9%) 1 (1.4%) 2 (2.9%)
EDL 107 66 (61.7%) 4 (3.7%) 2 (1.9%) 33 (30.8%) 6 (5.6%)
W/Wv 67 31 (46.3%) 3 (4.5%) 1 (1.5%) 33 (49.3%) 2 (3.0%)
Nell2−/− 67 54 (80.6%) 5 (7.5%) 2 (3.0%) 6 (9.0%) 2 (3.0%)

Fig. 3  Comparative representation of genes downregulated in lumicrine signaling-deficient and endocrine signaling-deficient mouse IS-caput epididy-
mides (A) Fold change of gene expressions in bilateral OD (n = 3) and unilateral OD (n = 3). Green and magenta represent downregulation and upregula-
tion, respectively. (B) Genes downregulated in bilateral OD IS-caput epididymis (fold change < 0.1, and t-test P < 0.05) compared with fold changes in 
unilateral OD, EDL, W/Wv, and Nell2−/− IS-caput epididymis. Average values are shown. Color indications are the same as in panel A
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bilateral OD and other lumicrine action-interfering treat-
ments but to a different extent.

There are several protein families known to be specifi-
cally expressed in the epididymis such as β-defensins [35, 
36], cystatins [37, 38], cysteine-rich secretory proteins 
(CRISPs) [39–41], and lipocalins [42, 43]. The regulated 
expressions of genes encoding such protein families were 
also investigated from the evolutional aspect (Fig.  5). 
All genes encoding these protein families have emerged 
since Amniota. The expressions of Amniota-specific 
β-defensin, cystatin, and lipocalin genes are downregu-
lated by either or both bilateral OD and lumicrine action-
interfering treatments, whereas Amniota-specific CRISP 
genes were not expressed in both control and experimen-
tally treated IS-caput epididymis. Also, the expressions 
of genes β-defensin, lipocalin, cystatin, and CRISP genes 
emerged since Theria were affected by both bilateral OD 
and lumicrine action-interfering treatments. Collectively, 
bilateral OD and lumicrine action-interfering treatments 

differently but critically affected the IS-caput epididymal 
expressions of genes acquired since Amniota.

Discussion
There are non-autonomous mechanisms that regulate 
epididymal cell differentiation and gene expression. By 
observing changes in the epididymis following OD and 
EDL, endocrine and lumicrine actions have been identi-
fied as secretory signaling mechanisms originating from 
this testis [13, 14, 44]. The actions of these two regula-
tory mechanisms on the epididymal gene expression 
have been investigated for many genes but have not been 
investigated comprehensively at the genomic level. How-
ever, recent advances in the analytical capabilities of next-
generation sequencing have made it possible to carry 
out comparative genome-wide expression analyses with 
higher precision and comprehensiveness than has been 
possible in the past. In the present study, the features of 
endocrine and lumicrine actions to regulate epididymal 

Fig. 4  Expression of genes classified based on the properties of resulting proteins. Gene expressions in sham-operated control, contralateral control, WT, 
bilateral OD, unilateral OD, EDL, W/Wv, and Nell2−/− IS-caput epididymis. (A) Genes are classified by subcellular localization using GO information. The 
expression levels of genes were accumulated for each group. (B) Genes are classified according to their evolution. The expression levels of genes were 
accumulated for each group. (C) Magnified representations of Mammals and Theria in panel B. All values are shown as mean ± S.E.M (n = 3)
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gene expression were examined by transcriptome ana-
lyzes. In the bilateral OD, the testicular endocrine and 
lumicrine actions are completely ablated. In the unilat-
eral OD, the endocrine and lumicrine actions originating 
from the ipsilateral testis on the epididymis are ablated, 
but the endocrine action is still compensated by that 
from the contralateral testis. The comparative transcrip-
tome analyses confirmed that the gene expression profile 
of unilateral OD is different from that of bilateral OD but 
rather like those of the lumicrine action-interfered ani-
mals such as EDL, W/Wv, and Nell2−/− mice (Figs. 2 and 
3; Table  1). Thus, as briefly described in the Result sec-
tion, unilateral OD is concluded to be a variation of the 
lumicrine action-interfering treatments.

Overview of testicular regulations of epididymal gene 
expression
The preceding studies unveiled that among genes 
expressed in the epididymis, some are regulated by the 
testicular endocrine and/or lumicrine signaling [8, 15, 16, 
23, 25, 27–31, 45–214]. In the present study, genes whose 
expressions were regulated by testicular endocrine and/
or lumicrine actions were explored further by compar-
ing RNA-seq data obtained from bilateral or unilateral 
OD, EDL, W/Wv, and Nell2−/− mouse epididymis. Genes 
whose expression is reduced by experimental treatment 
are especially important because their gene expression 
is positively regulated under physiological conditions. 
Such downregulated genes can be classified into several 
groups: i, genes downregulated by lumicrine action-
interfering treatments, and therefore affected equally 
also by bilateral OD; ii, genes not affected by lumicrine 
action-interfering treatments, but downregulated only 

Fig. 5  Expression of gene families abundantly expressed in the epididymis. The accumulated expression levels of genes encoding β-defensins, lipocalins, 
cystatins, and CRISPs in sham-operated control, contralateral control, WT, bilateral OD, unilateral OD, EDL, W/Wv, and Nell2−/− IS-caput epididymis are 
shown according to their evolution. All values are shown as mean ± S.E.M (n = 3)
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by bilateral OD; iii, genes moderately downregulated by 
lumicrine action-interfering treatments and further by 
bilateral OD. Not all genes downregulated by unilateral 
OD are solely regulated by lumicrine signaling. The dif-
ferentiation and associated gene expression of the IS 
epididymis require androgen action even if the luminal 
communication between testis and epididymis is intact; 
in Rnase10-cre; ArloxP mice, in which androgen receptors 
are conditionally knocked out in the proximal epididy-
mis, the IS differentiation and associated gene expres-
sion are inhibited [8]. Therefore, the expression of genes 
downregulated by lumicrine action-interfering treatment 
is also regulated in a concerted way by lumicrine and 
endocrine signaling mechanisms. Collectively, the epi-
didymal expression of individual genes is regulated not 
solely by either endocrine or lumicrine mechanisms, but 
rather to varying degrees.

Evolution of endocrine and lumicrine regulation of the 
epididymis by the testis
A variety of information for biological processes can be 
extracted by analyzing transcriptomes. In the present 
study, the transcriptomes were analyzed further based 
on the subcellular localization of gene products and gene 
evolution. Since such gene characterizations were based 
on the resulting proteins, genes encoding small non-
coding RNAs, which are also enriched in the epididymis 
[215], were not analyzed in the present study. A compari-
son of the expression of genes selected based on GO pro-
tein localization information showed downregulation of 
GO “extracellular” genes by bilateral OD, indicating that 
the induction of extracellular proteins is one of the major 
targets of testicular endocrine signaling. On the other 
hand, expression comparisons of genes classified based 
on vertebrate evolutionary information showed there 
are selective regulations of gene expression by lumic-
rine and endocrine signaling mechanisms according to 

the evolutionary stage. The lumicrine signaling regulated 
the expression of genes acquired in Amniota, which cor-
responds to the early post-land expansion in the ver-
tebrate evolutionary classification criteria adopted in 
this study. Since Amniota, regulation by both lumicrine 
and endocrine actions was found for genes acquired in 
Mammalia and Theria. For genes acquired evolutionarily 
more recently after Euthelia, only endocrine regulation 
was apparent. The expressions of several epididymis-
specific genes such as encoding β-defensins, cystatins, 
CRISPs, and lipocalins were also specifically regulated 
by the testicular endocrine and lumicrine actions since 
Amniota. These findings suggest a possibility that tes-
ticular endocrine and lumicrine regulation of epididymal 
gene expression was active since the establishment of the 
epididymis in the Amniota but the extent of their con-
tribution has been varying in the later evolution (Fig. 6). 
Among the genes acquired before Tetrapoda, there are 
genes such as Adam28, Etv1, Etv4, Etv5, Mfge8, and 
Ovch2 whose epididymal expressions are regulated by 
endocrine and/or lumicrine signaling [15, 24, 216]. How-
ever, in contrast to the genes acquired after Amniota, 
the total expressions of genes acquired before Tetrapoda 
were not critically affected by the testicular endocrine 
and lumicrine regulations. These observations suggest a 
possibility that genes acquired before Tetrapoda function 
rather as housekeeping genes in the proximal epididymis 
whereas genes acquired after Amniota function as those 
responsible for epididymis-specific functions. The evo-
lution of the epididymis has been investigated mainly by 
comparative anatomy [217]. Although the findings in the 
present study do not clarify the genetic mechanisms of 
epididymis formation, they will provide new insights into 
how epididymal gene expressions have been regulated by 
testicular endocrine and lumicrine actions through verte-
brate evolution.

Fig. 6  A hypothesis for the testis-epididymis secreted signaling during evolution. Before Amniota, the epididymis and therefore testis-epididymis secret-
ed signaling did not exist. In Amniota, in which the epididymis had developed from the mesonephros, testis-derived endocrine and lumicrine regulation 
of epididymal gene expression (represented by pink and blue arrows, respectively) emerged. Such contributions by endocrine or lumicrine action to the 
epididymal gene expression (represented by the size of arrows) can alter along evolution

 



Page 10 of 15Kiyozumi Reproductive Biology and Endocrinology           (2024) 22:40 

In conclusion, the present study has unveiled the differ-
ent characteristics of the endocrine and lumicrine actions 
on the regulation of epididymal gene expression.
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