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An artificial intelligence model (euploid 
prediction algorithm) can predict embryo 
ploidy status based on time‑lapse data
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Abstract 

Background:  For the association between time-lapse technology (TLT) and embryo ploidy status, there has not 
yet been fully understood. TLT has the characteristics of large amount of data and non-invasiveness. If we want to 
accurately predict embryo ploidy status from TLT, artificial intelligence (AI) technology is a good choice. However, the 
current work of AI in this field needs to be strengthened.

Methods:  A total of 469 preimplantation genetic testing (PGT) cycles and 1803 blastocysts from April 2018 to 
November 2019 were included in the study. All embryo images are captured during 5 or 6 days after fertilization 
before biopsy by time-lapse microscope system. All euploid embryos or aneuploid embryos are used as data sets. The 
data set is divided into training set, validation set and test set. The training set is mainly used for model training, the 
validation set is mainly used to adjust the hyperparameters of the model and the preliminary evaluation of the model, 
and the test set is used to evaluate the generalization ability of the model. For better verification, we used data other 
than the training data for external verification. A total of 155 PGT cycles from December 2019 to December 2020 and 
523 blastocysts were included in the verification process.

Results:  The euploid prediction algorithm (EPA) was able to predict euploid on the testing dataset with an area 
under curve (AUC) of 0.80.

Conclusions:  The TLT incubator has gradually become the choice of reproductive centers. Our AI model named EPA 
that can predict embryo ploidy well based on TLT data. We hope that this system can serve all in vitro fertilization and 
embryo transfer (IVF-ET) patients in the future, allowing embryologists to have more non-invasive aids when selecting 
the best embryo to transfer.
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Introduction
In the field of assisted reproductive technology (ART), 
selecting embryos with the highest developmental poten-
tial has always been a research hotspot, and it is also the 
direction of all embryologists’ efforts [1]. There are many 
methods for selecting embryos that have been reported, 

and these methods can be roughly divided into non-inva-
sive and invasive.

Non-invasive methods include proteomics and metab-
olomics research, as well as developmental dynamics 
research [2–5]. Compared with invasive methods, non-
invasive embryo selection methods are undoubtedly 
more natural and safer. Some researchers have ques-
tioned the safety of PGT’s invasive biopsy method and its 
impact on embryo implantation potential, because there 
are reports that invasive removal of cells from preimplan-
tation embryos may interfere with embryo development 
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[6, 7]. In addition, invasive biopsy requires special equip-
ment and well-trained embryologists, which are different 
from routine in terms of time and cost. In short, although 
invasive biopsy is still the cornerstone of PGT, there are 
non-invasive methods to help select embryos when inva-
sive biopsy is unnecessary. We believe that no one will be 
willing to try invasive methods.

Among non-invasive methods, time-lapse technology 
(TLT) can already provide us with a lot of information 
about embryonic development dynamics [8]. It allows 
embryologists to progress from the previous static evalu-
ation to the dynamic evaluation, and provides a great help 
for embryo selection [9]. To this end, European Society of 
Human Reproduction and Embryology (ESHRE) Time-
lapse working group also gave a systematic introduction 
and evaluation of TLT [10, 11].

Invasive methods mainly refer to PGT technology. 
PGT for aneuploidy (PGT-A) can provide embryo ploidy 
information, which is very important for embryo implan-
tation. However, PGT is not available in all countries 
and there remains some controversy regarding its cost-
effectiveness or clinical necessity [12–15]. As mentioned, 
TLT provides information on all the kinetic parameters 
of embryonic development. If we can find ploidy-related 
indicators from the TLT data, it will be very beneficial for 
all patients with routine in vitro fertilization and embryo 
transfer (IVF-ET). In other words, the ability to know or 
predict ploidy information with a high probability with-
out invasive biopsy can greatly improve the efficiency of 
embryo selection and further improve clinical outcomes. 
There have been comprehensive review articles discuss-
ing the relationship between TLT and ploidy [16, 17]. The 
conclusion shows that although the relevant parameters 
have been reported, the desired results have not been 
achieved, and more research is still needed.

For massive amounts of data, artificial intelligence (AI) 
can help us, especially in the analysis and classification 
of embryonic developmental dynamics parameters [18]. 
In terms of clinical pregnancy research, articles on AI 
applications have been reported. Researchers use deep 
learning through embryo pictures and kinetic parameters 
to achieve good prediction results (area under curve, 
AUC>0.9) [19, 20]. However, there are not many reports 
on the research of artificial intelligence in ploidy, which is 
also the goal that various research teams strive to achieve. 
Recently, Chavez-Badiola et  al.[21] and Bori et  al. [22] 
reported the use of AI and TLT to predict embryo ploidy 
information. These are very important research results in 
this field. As stated in the guide: ‘There is little doubt that 
the future of AI and TLT will incorporate some degree of 
machine learning, to facilitate complex analysis of large 
data sets, which will likely reveal currently unidentified 
combinations of visual markers.’ [10]. More research 

needs to be reported to improve the efficiency and accu-
racy of ploidy prediction.

The aim of this study is to develop a model named 
euploid prediction algorithm (EPA) that can predict 
embryo ploidy through TLT data, and provide more help 
for embryo selection or sorting in conventional IVF-ET 
cycles.

Materials and methods
Study design and participants
In this single-center cohort study, a total of 469 PGT 
cycles and 1803 blastocysts were included in the study. 
The time-lapse embryo data used in this study are col-
lected from Reproductive Medicine Center of Tongji 
Hospital, Huazhong University of Science and Technol-
ogy, Wuhan, China. All embryo images are captured 
during 5 or 6 days after fertilization before biopsy or cry-
opreservation by Embryoscope Plus time-lapse micro-
scope system (Vitrolife, Denmark) from April 2018 to 
November 2019. All patients signed written informed 
consent and underwent the routine clinical treatment 
performed in our center. No additional intervention was 
performed. The study conformed to the Declaration of 
Helsinki for Medical Research involving Human Subjects. 
It was approved by the Ethical Committee of Reproduc-
tive Medicine Center, Tongji Hospital, Tongji Medicine 
College, Huazhong University of Science and Technology. 
The design and process of the study are shown in Fig. 1.

ICSI and embryo incubation
The procedures for intracytoplasmic sperm injection 
(ICSI) have been described previously [23]. Briefly, dur-
ing the ICSI processing, cumulus cells and the corona 
radiata of the oocytes were removed by brief exposure 
to hyaluronidase 2-3 h after retrieval (HYASE, Vitrolife); 
ICSI was performed on metaphase II oocytes as observed 
under an inverted microscope. All injected eggs were 
placed into timelapse incubator immediately (Embryo-
scope Plus). Then, the fertilized oocytes were continu-
ously cultured at 5%CO2, 5%O2 and 37ºC for 2 more days 
(G1-plus, Vitrolife, Sweden). The culture conditions of 
the embryos included in this study were the same. All of 
the embryos were checked on the morning of day 3 after 
oocyte retrieval. Then the embryos were changed to blas-
tocyst medium to continue culture until Day5/6 (G2-plus, 
Vitrolife, Sweden). The blastocyst biopsy is done on the 
Day5/6. A small hole is made in the zona pellucida using 
a laser just prior to biopsy, and then a mechanical cutting 
method is used to obtain 3-6 trophectoderm cells.

NGS analysis
Details of next-generation sequencing technology (NGS) 
analysis procedure have been described previously [24]. 
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Briefly, a multiple annealing and looping-based amplifica-
tion cycles (MALBACs) based single-cell whole-genome 
amplification (WGA) protocol was used to amplify the 
samples following the commercial kit protocol from 
Yikon Genomics. A series of DNA fragmentation, ampli-
fication, tagging, and purification were completed. 
Then, the products were purified. The final library was 
sequenced using Life Technologies Ion Proton platform 
at approximately 0.04×genome depth. This sequencing 
throughput yields reproducible copy number variation 
(CNV) with approximately 4  MB resolution to detect 
variation. The threshold for aneuploidy detection was set 
to be greater than 70%. The threshold for mosaic detec-
tion varies from chromosomes. For chromosomes 13, 16, 
18, and 21, the lower limit was 30%, for the 19 chromo-
some, lower limit was 50%, for others, lower limit was 
40%. The value below the lower limit indicates a euploidy.

Dataset
All the euploid or aneuploid embryo are used as data sets. 
We merge embryo images, embryo development infor-
mation, and patient clinical information to form a com-
plete data set. The kinetic parameters of each blastocyst 

are manually marked by Dr. Huang. All the marked data 
in this study were reviewed by Dr. Tan. The data set is 
divided into training set, validation set and test set. The 
training set is mainly used for model training, the valida-
tion set is mainly used to adjust the hyperparameters of 
the model and the preliminary evaluation of the model, 
and the test set is used to evaluate the generalization abil-
ity of the model.

In order to reduce the risk of over-fitting, we adopt the 
k-fold cross-validation method to ensure that each sam-
ple has only one chance to be included in the training 
set or test set during each iteration. In this study, k is set 
to 10 based on empirical values. In other words, the all 
data set is divided into ten parts (D1-D10). Among these 
parts, D10 is always reserved as a test set to improve the 
generalization ability of the test model. The rest is used 
for training. The D9, D8, … D1 take turns to be used as 
the verification set in order to evaluate models. (Figure 2). 
For better verification, we used data other than the train-
ing data for external verification. We used the PGT cycle 
data from December 2019 to December 2020. A total of 
155 PGT cycles and 523 blastocysts were included in the 
verification process.

Fig. 1  Flow chart of the study design
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Algorithm Description
This algorithm is mainly divided into three modules. The 
first module is mainly used to extract embryo sequence 
image features (a), the second module is mainly used to 
normalize embryo data and clinical data features (b), 
and the third module is mainly used for feature fusion 
and model prediction (c). The brief schematic diagram is 
shown in Fig. 3.

Embryo sequence image feature extraction module
The embryo images taken in the TL incubator are 
sequentially input into the network model along with the 
embryonic development process. Before the model train-
ing calculation, in order to speed up the convergence 

speed of the model and improve the accuracy of the 
model, it is necessary to perform preliminary processing 
operations on the image, including the embryo image is 
incomplete and the embryo image is blurred. According 
to the consensus of embryology experts and the embryo 
development time reported in the literature [10, 25], this 
article intercepted embryo images of 26-28  h, 40-45  h, 
55-65 h, 85-95 h, 110-116 h and 132.5-136 h.

According to the embryo development video, 64 non-
adjacent images are randomly selected with a step size 
of 2 to contain as much as possible the images of the 
embryo at different stages. The 64 embryo images were 
adjusted to a resolution of 112 × 112, and the image val-
ues were normalized. This research uses the first 49 layers 

Fig. 2  The distribution of the data set. the all data set is divided into ten parts (D1-D10). Among these parts, D10 is always reserved as a test set to 
improve the generalization ability of the test model. The rest is used for training. The D9, D8, … D1 take turns to be used as the verification set in 
order to evaluate models

Fig. 3  The brief schematic diagram of algorithm
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of 3D convolutional network of 3D-resnet50 [26] as the 
video sequence feature extraction network. Input the 
preprocessed image into the network, after going through 
a 7 × 7 × 7 three-dimensional convolution network, and 
then passing through 3, 4, and 6 three-dimensional con-
volution blocks in turn, the 2048-dimensional features of 
sequence image is obtained after adaptive pooling.

Data preprocessing module
The kinetic parameters during embryo development are 
input as embryo data. At the same time, the patient’s age 
is input as clinical data. In order to reduce the influence 
of embryonic data and clinical data’s numerical value pre-
diction model parameters, this paper uses formula (1) to 
standardize the data.

−

xrepresents the average value of the variable, and δ rep-
resents the variance of the variable. Replace the missing 
items with 0.

Model prediction module
In order to better integrate multiple feature informa-
tion, this study proposes to use a fully connected layer 
network as a multi-source information fusion network. 
The 2048-dimensional video sequence features extracted 
by 3D-resnet50 are spliced with the standardized clini-
cal and embryo data features to form a new feature vec-
tor, which is processed by the multi-source information 
fusion network to obtain the fused feature vector, and 
then input to the second layer predictive classification 
of models in a fully connected network. Select the label 
corresponding to the maximum value of the two output 
result values as the final output value of the embryo.

AUC​
The AUC ranges from 0.5 to 1.0, representing the predic-
tive power of the binary classifier. An AUC of 0.5 means 
completely random selection, and an AUC of 1 means 
complete discrimination. The higher the AUC, the more 
favorable the trade-off between sensitivity and specific-
ity [19]. The quantitative value of AUC can also be sim-
ply interpreted as the probability that the binary classifier 
will score randomly selected euploid embryos higher 
than that of randomly selected aneuploid embryos. 
Therefore, AUC is the most suitable benchmark for the 
ability of a binary classifier to rank embryos based on the 
likelihood of embryo ploidy status.

(1)x
’
=

x−
−

x

δ

Results
From April 2018 to November 2019, a total of 469 PGT 
cycles used the time-lapse culture system. Among them, 
419 cycles have available blastocyst. In 4 cycles, the 
patient gave up PGT. The clinical characteristics of PGT 
cycles were shown in Table 1. In the end, a total of 415 
cycles and 1803 blastocysts were included in the study. 
1,803 blastocysts were biopsied and sequenced. 1,779 
blastocysts had test results, and the detection rate was 
99%. The results showed that 617 blastocysts are euploid, 
873 blastocysts are aneuploid, 289 blastocysts are mosaic. 
We only select euploid and aneuploidy samples for this 
study.

As mentioned in Fig.  4, the development of EPA 
research tried a variety of data set test models. Initially 
using the last single picture before biopsy at the blasto-
cyst stage, the tested AUC was 0.57. Then we used the 
video of the blastocyst stage, which is the video of the 
embryo at 70 h until before biopsy, and the tested AUC 
was 0.60. Then we used entire video files of the cleav-
age stage and the blastocyst stage, and the tested AUC 
increased to 0.63. Adding the age of the patient and 
the age of blastocyst (Day5 or Day 6), the AUC can be 
increased to 0.72. In addition, we add kinetic parameters, 
the resulting AUC of EPA to predict euploid on the test-
ing dataset was 0.77. Finally, in order to improve the effi-
ciency of the algorithm, we further optimized the use of 
videos and only use videos from a few time periods, the 

Table 1  Clinical characteristics of PGT cycles

Parameter

No. of cycles/patients 469

No. of cycles with available blastocysts (%) 419 (89.3)

No. of cycles cancelled (%) 4 (0.8)

No. of cycles included in the study 415

Age (y) 30.8 ± 4.5

Duration of infertility (y) 2.6 ± 2.5

Basic FSH 7.3 ± 2.5

Basic AMH 5.2 ± 3.7

BMI 22.2 ± 3.1

Duration of stimulation (days) 10.3 ± 1.8

No. of oocytes 6,217

No. of matured oocytes 5,026

No. of two pronucleus (2pn) 3850

Fertilization rate (%) 76.6

No. of available blastocyst 1,803

No. of available blastocysts per cycle 4.34

Euploid (%) 617 (34.2)

Aneuploidy (%) 873 (48.4)

Mosaicism (%) 289 (16.0)

Amplification failed (%) 24 (1.3)
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Fig. 4  Schematic diagram of Euploid Prediction Algorithm (EPA) research process

Fig. 5  Algorithm’s performance: receiver operating characteristic (ROC) curve. Curve 1, using a single picture before transfer at the blastocyst stage. 
Curve 2, using blastocyst stage video file. Curve 3, using entire video files of the cleavage stage and the blastocyst stage. Curve 4, adding the age 
data based on curve 3. Curve 5, adding kinetic data of embryo based on curve 4. Curve 6, optimizing the use of videos based on curve 5
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resulting AUC of EPA to predict euploid on the testing 
dataset was 0.80. These results were shown in Fig. 5. An 
example of the predictive calculation process was in the 
Supplementary Data. Among the 155 PGT cycles used 
for external verification, 21 of them did not undergo a 
biopsy because there was no blastocyst formation, so 
the final number of used for external verification was 
134 cycles. These cycles have formed a total of 523 blas-
tocysts. They were all biopsied and sequenced. Among 
them, 6 blastocysts failed to be amplified. In the end, 517 
blastocysts had results, 246 were euploid, 221 were ane-
uploid, and 50 were mosaic. We use the data of euploid 
embryos and aneuploid embryos to verify the algorithm. 
The confusion matrix to represent predictions made by 
EPA for ploidy status in the test data set was shown in 
Table 2.

Discussion
Artificial intelligence (AI) can help humans in a variety of 
clinical applications, because it has the ability to quickly 
learn from large data sets (such as medical images), and 
because it can weigh variables (high-precision variable 
weights) and improve in clinical practice medical effi-
ciency and accuracy [27, 28]. In recent years, the research 
of AI in the field of assisted reproduction is very hot. This 
can be seen from the number of submissions of annual 
proceedings of the American Society of Reproduc-
tion and European Society of Human Reproduction and 
Embryology [13]. Embryologists in each laboratory have 
their own evaluation system and personal experience 
on how to select embryos with the most developmental 
potential. But for the increasing amount of embryonic 
development data from TLT, it would be better if AI can 
contribute to it.

For embryo ploidy, the assistance of AI is another key 
research direction. We know that PGT technology can 
allow embryologists to know the ploidy of embryos before 
transfer, and better help patients with repeated implanta-
tion failure (RIF), recurrent abortion and advanced age. 
Wouldn’t it be better if this technology could serve all 
IVF patients? However, biopsy is an invasive procedure 
for embryos. Therefore, it will be very important if there 
is a technology that can replace the biopsy technology 

to know the ploidy of the embryo. Each research team is 
working hard for this. The AI model (ERICA) reported by 
Chavez-Badiola et al. can help embryologists successfully 
sort blastocysts based on their predicted ploidy during 
embryo selection [21]. The accuracy of the prediction is 
0.70, among which the positive predictive value is 0.79 for 
predicting euploidy. This result is very good in the study 
of euploid prediction. They used a total of 1231 images of 
embryos, which were derived from a single image taken 
by two inverted microscopes of different models on day 
5/6. Due to image quality, 946 images (77%) were finally 
used. As for the source of the images, this study is differ-
ent from them. In this study, the embryo images we used 
are all from the same model of TL incubator, the pixels of 
the images are the same, and there is a complete embryo 
development process video. It allows us to use different 
embryonic development parameters or choose different 
development time periods to optimize and improve the 
algorithm when building the AI model.

Before using AI to find the prediction method of 
embryo ploidy state, many research teams have been pay-
ing attention to the relationship between embryo devel-
opment kinetic parameters and ploidy state. Reignier 
et  al. [16] made a systematic review of these studies. A 
total of 13 studies were included in the analysis. Ten of 
the studies proved that the ploidy state of the embryo is 
related to the dynamics of embryonic development, and 
the other three studies did not find a significant correla-
tion. In general, morphokinetic parameters can help dis-
tinguish between euploid and aneuploid embryos, but 
they are not sufficient to replace PGT. It can only be said 
that the morphokinetic assessment together with PGT 
may ultimately help identify euploid embryos with the 
highest in vitro development potential. This review also 
gives us other thoughts. If we can comprehensively con-
sider information such as kinetic parameters, patient age, 
embryo age, and ploidy status, there may be more accu-
rate or more practical methods to help us select embryos 
that are more likely to be euploid in vitro.

At the very beginning of our AI model building, we 
also tried to use the last blastocyst image to build the 
model. Without adding embryo and clinical informa-
tion, our algorithm only achieved AUC of 0.57. We 
used the complete embryo development video (cleavage 
stage and blastocyst stage), AUC can be increased to 
0.63. Then we join the age of the patient and the age of 
blastocyst, the AUC can be increased to 0.72. Consider-
ing that there are reports in the literature that kinetic 
parameters are related to ploidy, such as t2 (time of 
cleavage to 2-cell), t3 (time of cleavage to 3-cell), t5 
(time of cleavage to 5-cell), cc2 (duration time of the 
second cell cycle), cc3 (duration time of the third cell 
cycle), s2 (synchronicity of the two blastomere divisions 

Table 2  The confusion matrix to represent predictions made by 
Euploid Prediction Algorithm (EPA) for ploidy status in the test 
data set

True Euploid True Aneuploid

EPA tested Euploid 193 46

EPA tested Aneuploid 53 175

Total tested embryos 246 221
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within the second cell cycle), tM (time of the forma-
tion of morula), tSB (time of Initiation of blastulation), 
tB (time of blastocyst), tEB (time of expanded blasto-
cyst) [29–37]. We tried to add kinetic parameters to 
improve the predicted outcome. After repeated experi-
ments, the resulting AUC of EPA to predict euploid 
on the testing dataset was 0.77. However, in this case, 
there will be a problem, that is, the entire prediction 
model process is relatively time-consuming, because 
the use of the entire video of embryonic development 
will increase the amount of calculation, and the calcula-
tion of 4 blastocysts takes almost 180  s. Therefore, we 
further optimized the use of videos and only use videos 
from a few time periods, so that the predicted AUC can 
reach 0.80 and the calculation time can be reduced to 
70  s for 4 blastocysts. This speed is a bit slower than 
Chavez-Badiola’s research [21], which may be related 
to the difference in algorithms and source data. How-
ever, we believe that with the continued optimization 
of the algorithm, this calculation speed will be further 
improved.

In general, for algorithm verification, 10% of the 
training set data is used for verification [19, 21]. We 
believe that this is internal verification to some extent, 
but we still need external verification. External verifi-
cation is usually one of the contents not carried out in 
most of the current research. Therefore, as one of the 
highlights of this research, we specifically added data 
other than training samples to verify the performance 
of the EPA. We conducted verification experiments on 
the data of 155 PGT cycles, 246 euploids and 221 ane-
uploidies in our center from December 2019 to Decem-
ber 2020, and the results showed that EPA’s euploid 
prediction accuracy (78.5%) It has been well verified 
(Table  2). To the best of our knowledge, this study is 
currently the report with the largest sample size and the 
best prediction accuracy. In the future, we will design a 
randomized controlled experiment to further verify the 
accuracy and practicability of EPA.

Although this study obtained a high predicted AUC, 
it still has several limitations. First of all, it is mainly 
reflected in the algorithm process, we have added 
manually annotated kinetic parameters. There are 
subjective differences in manual annotation of kinetic 
parameters[38], which requires laboratory embryolo-
gists to be very experienced and able to unify embryo 
judgment standards. At the same time, this may cause 
inconvenience to the rapid operation of the entire 
algorithm and future clinical applications. Secondly, 
although the sample size of the study is the largest 
observed (to date), AI algorithms might be trained on 
a larger database to avoid overfitting. This requires us 
to accumulate data, or to carry out multi-center data 

algorithm development research. Another limitation is 
that our data source is all embryo data of PGT patients. 
Whether the prediction system derived from this data 
source can be applied to other infertility patients. This 
requires longer time and well-designed experiments to 
verify.

Conclusions
At present, the TL incubator has gradually become the 
choice of reproductive centers when they need to update 
their equipment [39]. We believe that there will be more 
and more AI research data from TL, so that the results of 
different laboratories can have a better parallel compari-
son. Our AI model (EPA) has added clinical and embry-
onic TL data to make this system more interpretable. It 
is essentially different from the ‘black box’[40] AI model 
that usually only has input and output. Our follow-up 
work will continue to increase data samples to further 
improve the prediction level, while reducing image usage 
to optimize calculation time. However, whether this algo-
rithm can calculate data obtained from other TLT devices 
requires more research. In addition, our data source is all 
embryo data of PGT patients. Whether the prediction 
system derived from this data source can be applied to 
other infertility patients. This also requires longer time 
and well-designed experiments to verify. In the future, 
we hope that this system can serve all IVF-ET patients, 
allowing embryologists to have more non-invasive aids 
when selecting the best embryo to transfer.
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