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Trophoblast derived extracellular 
vesicles specifically alter the transcriptome 
of endometrial cells and may constitute 
a critical component of embryo‑maternal 
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Abstract 

Background:  The period of time when the embryo and the endometrium undergo significant morphological altera‑
tions to facilitate a successful implantation—known as “window of implantation”—is a critical moment in human 
reproduction. Embryo and the endometrium communicate extensively during this period, and lipid bilayer bound 
nanoscale extracellular vesicles (EVs) are purported to be integral to this communication.

Methods:  To investigate the nature of the EV-mediated embryo-maternal communication, we have supplemented 
trophoblast analogue spheroid (JAr) derived EVs to an endometrial analogue (RL 95–2) cell layer and characterized 
the transcriptomic alterations using RNA sequencing. EVs derived from non-trophoblast cells (HEK293) were used as a 
negative control. The cargo of the EVs were also investigated through mRNA and miRNA sequencing.

Results:  Trophoblast spheroid derived EVs induced drastic transcriptomic alterations in the endometrial cells while 
the non-trophoblast cell derived EVs failed to induce such changes demonstrating functional specificity in terms of EV 
origin. Through gene set enrichment analysis (GSEA), we found that the response in endometrial cells was focused on 
extracellular matrix remodelling and G protein-coupled receptors’ signalling, both of which are of known functional 
relevance to endometrial receptivity. Approximately 9% of genes downregulated in endometrial cells were high-con‑
fidence predicted targets of miRNAs detected exclusively in trophoblast analogue-derived EVs, suggesting that only 
a small proportion of reduced expression in endometrial cells can be attributed directly to gene silencing by miRNAs 
carried as cargo in the EVs.

Conclusion:  Our study reveals that trophoblast derived EVs have the ability to modify the endometrial gene expres‑
sion, potentially with functional importance for embryo-maternal communication during implantation, although the 
exact underlying signalling mechanisms remain to be elucidated.
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Background
Embryo implantation is a crucial step in human repro-
duction where the embryo initiates physical contact with 
maternal tissue. The embryo first loosely attaches itself 
to the endometrial epithelial lining and then proceeds 
to invade the uterine stromal cell layer [1]. The endo-
metrial epithelium and the underlying stromal cells go 
through remarkable alterations to facilitate the process of 
implantation. Most of the physiological and biochemical 
changes happening in the vicinity of embryo attachment 
site are localized to the implantation site only, giving rise 
to the theory that the embryo itself directs the changes 
required for implantation in the endometrium [2, 3]. 
Subsequently, the mechanisms of endometrial regulation 
arising from the embryo have emerged as a subject of 
intense scientific investigation.

One of the hypotheses being investigated in this regard 
is the theory of embryo-maternal cross-talk which posits 
that the embryo and the endometrium undergo a com-
plex set of “negotiations” prior to and during apposition, 
the first step of implantation, in the time period known 
as the “window of implantation” (WOI) [4, 5]. The cross-
talk prepares both the embryo and the endometrium for 
a successful implantation by inducing specific biochemi-
cal alterations in the epithelial cells and the underlying 
uterine architecture [6, 7]. Inadequate intercellular dialog 
would result in implantation failure, which is also the 
main cause of unsuccessful attempts in assisted repro-
duction [8–10]. Evidence of embryo-maternal cross-talk 
is reported by a number of studies focusing on different 
modes of signalling. For example, hormonal regulation of 
endometrial tissues is a well-known phenomenon [11–
13], There is also evidence of cytokine based regulation 
of endometrial tissue during the WOI [14–17] and direct 
protein–protein embryo-maternal interactions [18]. 
However, as embryo implantation is a temporally and 
spatially complex process, it likely involves several other 
mechanisms that are less known.

One of the alternative methods of communication 
under consideration is extracellular vesicle (EV) medi-
ated communications. EVs are a heterogeneous group 
of membrane bound small (diameter of 20 – 1000  nm) 
spherical biological structures known to be secreted by 
every known cell type. Although they were initially con-
sidered ‘cellular garbage’ of little interest, in the recent 
years the concept of EVs as means of intercellular com-
munication has gained traction.

EV-mediated communication may involve diverse 
mechanisms. They carry an extensive surface proteome 

and possess a large surface to volume ratio. Mediated 
by these surface bound molecules, EVs take part in a 
multitude of molecular interactions with the target cell 
membrane. These exchanges form a connection between 
the EV source and the target cell accomplishing a pleth-
ora of physiological functions [19–21]. Another well-
known method of EV based communication concerns 
the EV cargo. EVs are known to carry a diverse cargo of 
RNAs, lipids and proteins which are protected from the 
destructive enzymesin the extracellular space [22–24]. 
EVs are taken up by target cells via various mechanisms 
such as macropinocytosis, phagocytosis, and lipid raft–
mediated internalization [25]. The cargo molecules 
are then released into the target cell’s cytoplasm. Vari-
ous instances of intercellular communication, includ-
ing embryo-maternal communication, are reported to 
involve EVs [26–29].

In an earlier study employing an in  vitro model of 
embryo-maternalcommunication, we showed that 
labelled RNA can be transferred remotely from tropho-
blast cells to endometrial cells via EVs [26]. In the current 
study, using the same in  vitro system, we investigated 
the hypothesis that embryo-derived EVs are capable of 
specifically altering the transcriptomic profiles of endo-
metrial cells. We analysed the RNA cargo of trophoblast 
EVs and EVs from a cell line of a non-reproductive origin 
(HEK-293, kidney origin). Co-incubation with tropho-
blast derived EVs induced substantial changes to the 
transcriptomic profile of endometrial cells, while no such 
alterations were observed after HEK EV co-incubation 
with endometrial cells. These data support the hypothesis 
that trophoblast EVs specifically interact with endome-
trial cells and may affect the gene expression in endome-
trial cells partially through their molecular cargo.

Because of the well-known ethical dilemmas of using 
human embryos for experimentation, we have used an 
in  vitro model of the pre-implantation microenviron-
ment in the current study. Human choriocarcinoma cell 
line JAr in 3D spheroidal form was used as an analogue 
for the trophoblast cells and the RL95-2 cell line was 
used as an analogue for the mid-secretary/WOI receptive 
endometrium.

Methods
Cell culture and spheroid formation
The human endometrial adenosquamous carcinoma cell 
line (RL95-2) was obtained from American Type Cul-
ture Collection (ATCC CRL-1671, Teddington, UK). 
RL95-2 was cultured in Dulbecco’s Modified Eagles 
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Medium (DMEM 12-604F, Lonza, Verviers, Belgium) 
supplemented with 1% Penicillin/Streptomycin (P/S, 
Gibco™ 15,140,122, Bleiswijk, Netherlands), 5  μg/ml 
Insulin (human recombinant insulin, Gibco, Invitro-
gen, Denmark), 1% L-glutamine (Sigma, 59202C, Saint 
Louis, USA) and 10% fetal bovine serum (FBS, Gibco™, 
10,500,064) at 37 °C in 5% CO2 conditions.

The human choriocarcinoma cell line (JAr) from the 
first trimester trophoblasts was acquired from ATCC® 
(HTB-144 ™, Teddington, UK). JAr cells were cultured in 
a T75 flask in RPMI 1640 media (Gibco, Scotland) sup-
plemented with 10% FBS, 1% L-glutamine and 1% P/S at 
5% CO2 in 37  °C. At confluency, JAr cells were washed 
with Dulbecco’s phosphate-buffered saline without Ca+2 
and Mg+2 (DPBS, Verviers, Belgium), harvested using 
trypsin–EDTA (Gibco® Trypsin, New York, USA) and 
pelleted by centrifugation at 250 g for 5 min. 1 × 106 cells/
ml were cultured in 5  ml of supplemented RPMI 1640 
medium in 60 mm Petri dishes at 5% CO2 in 37 °C. The 
cells were kept on a gyratory shaker (Biosan PSU-2  T, 
Riga, Latvia), set at 295 rotations per min (rpm) for 18 h. 
The multicellular spheroids were used to mimic tropho-
blast cells in vitro.

The human embryo kidney (HEK) 293  T cell line 
(acquired from ATCC®, CRL-3216™, Teddington, 
UK) was cultured in DMEM supplemented with 10% 
of heat-inactivated FBS (Gibco) and 1% L-glutamine 
(Sigma). All cells were grown in T75 flasks at 37 °C in 5% 
CO2conditions. The media was changed every second 
day until confluence of the cells. One million cells were 
counted with a haemocytometer and cultured overnight 
on a gyratory shaker to form multicellular spheroids as 
described above.

Preparation of EV depleted medium
EV depleted FBS was produced using the ultrafiltration 
method described by Kornilov et al. in 2018 [30]. Briefly, 
the FBS was filtered using Amicon ultra-15 centrifugal 
filters (100  kDa, MERCK KGAA, Darmstadt, Germany) 
at 3,000 g for 55 min. This method removed 90% of the 
nanoparticles from the FBS. The filtered FBS was used as 
a 10% supplementation for all the cell type specific com-
plete culture media described above to prepare the EV 
depleted complete media.

EVs purification and characterization
EVs were harvested from conditioned media of spheroid 
culture of both the JAr and HEK293 cell lines. Condi-
tioned media was centrifuged at 400  g for 10  min. The 
supernatant was again centrifuged at 4,000 g for 10 min 
and thereafter at 20,000  g for 15  min to get rid of cell 
debris and apoptotic bodies. To isolate EVs, conditioned 
media was concentrated to 500 µl with Amicon® Ultra-15 

centrifugal filter devices (10 kDa cut-off). RNase inhibi-
tor (1u/µl, Recombinant RNasin®, Promega corp., 2800, 
Woods Hollow Road, Madison, WI) was added to con-
ditioned media to protect EVs’ RNA during the isolation 
process. EVs were isolated using size exclusion chro-
matography (SEC). A cross linked 4% agarose matrix 
of 90  µm beads were used (Sepharose 4 fast flow™, GE 
HealthCare Bio-Sciences AB, Uppsala, Sweden) in a 
10 cm column. Fractions 7–10 (fraction size 1 ml) were 
collected. Fractions were concentrated using Ami-
con® Ultra-15 centrifugal filter devices (10 kDa cut-off). 
Isolated EVs were characterized following the proto-
cols described elsewhere in details [26, 31]. Briefly, EVs 
were quantified by nano-particle tracking analysis using 
ZetaView (Particle Metrix GmbH, Inning am Ammer-
see, Germany). Surface proteome of the isolated EVs 
were analysed using western blot for standard EV mark-
ers, CD63, CD81 and CD9. Morphology of the EVs was 
observed using transmission electron microscopy. EV 
characterization methods were published in our earlier 
study [26].

Whole RNA extraction and quality control
Whole RNA was extracted from cells and EVs by TRIzol 
Reagent and isopropanol precipitation (TRIzol® reagent; 
Invitrogen). To increase the efficiency of RNA extraction, 
20  µg glycogen (UltraPure™ Glycogen, Cat. no. 10814–
010, Thermo Fisher Scientific, Bleiswijk, Netherlands) 
was added to the lysis buffer per sample. The RNA pel-
let was washed three times by 75% ethanol. Quality and 
quantity of the extracted RNA samples were analyzed by 
Bioanalyzer Automated Electrophoresis instrument (Agi-
lent technologies, Santa Clara, CA) using Agilent RNA 
6000 Pico kit (Agilent technologies).

cDNA Library preparation and mRNA sequencing
RNA sequencing libraries were generated using multi-
plexing capacity of Smart-seq2 methodology with slight 
modifications [32]. Instead of single cells, 20 ng of total 
RNA was used for cDNA synthesis and 10 cycles of PCR 
for pre-amplification. KAPA HiFi DNA polymerase was 
replaced with Phusion High-Fidelity DNA Polymerase 
(Thermo Scientific) compatible with the original pro-
tocol. 2 μL of diluted cDNA was applied to dual-index 
library preparation using Illumina Nextera XT DNA 
Sample Preparation Kit (FC-131–1024). AMPure XP 
beads (Beckman Coulter) were used for all clean-up steps 
and for size selection (200–700  bp). All samples were 
pooled into single library by equal concentration and 
sequenced on Illumina NextSeq500 using High Output 
Flow Cell v2.5 (single-end, 75 bp).
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Processing, alignment, and quantification 
of RNAsequencing(RNAseq) reads
The quality of raw reads was assessed using FASTQC 
v0.11.8 [33]. Trimmomatic v0.39 was used for read trim-
ming and removal of adaptor sequences, using the follow-
ing parameters: LEADING:20, SLIDINGWINDOW:4:15, 
ILLUMINACLIP: *:1:30:15 and MINLEN:25.

Reads were aligned to the hg38 human reference 
genome. The alignment was performed using HISAT2 
[34] with default parameters and with the inclusion of 
splice site information derived from the corresponding 
Ensembl H. sapiens annotation file (GRCh38.97). The 
sequencing of EV RNA samples yielded relatively low 
percentage of reads mapped to the genome. For HEK293 
EVs, on average 3.08% of 6,820,518 total alignments 
were successfully assigned. In case of JAr EVs, 4.48% of 
4,672,213 total alignments were successfully assigned on 
average. For RL95-2 cells treated with JAr EVs, 5,747,968 
reads were aligned on average and 32.39% of which were 
successfully assigned to the genome. Average number 
of aligned reads and percentage of successfully assigned 
reads were 5,282,088 (56.84%) in case of untreated 
RL95-2 cells and 4,974,678 (54.94%) for RL 95–2 cells 
treated with HEK293 EVs. Gene-level read counts were 
obtained using featureCounts [35] with default param-
eters, using the Ensembl H. sapiens annotation file 
(GRCh38.97) for genomic feature annotations. Genes 
with at least 10 counts for all the samples in at least one 
of the experimental groups were retained in the analysis 
for subsequent differential expression testing.

Differential gene expression analysis
Differential expression (DE) analysis was carried out in R 
version 3.6.1 using the edgeR package version 3.26.8 [36]. 
Tagwise dispersion estimates were obtained based on the 
trended dispersions, and statistical comparisons were 
performed using a generalized linear model followed by 
likelihood ratio tests, also accounting for the experiment 
batch. We considered the differential expression of gene-
swith a false discovery rate (FDR) ≤ 0.05 to be statistically 
significant.

Gene set enrichment analysis (GSEA), and pathway 
over-representation analysis was conducted using the 
ReactomePA package [37] and Reactome Pathway data-
base annotations [37]. GSEA was used for full gene 
lists obtained from DE analysis that were ranked by 
-log10p × log2FC, where p denotes unadjusted p-values 
and FC the fold-change.

Principal components were calculated using prcomp 
function from the Stats package and visualized using the 
ggplot2 package [38]. The pheatmap package [39] was 
used for heatmap visualization with hierarchical cluster-
ing based on Euclidean distance.

RNA extraction for miRNA sequencing
The EVs (1 × 108 EVs extracted from 10 ml of conditioned 
medium)were sorted into 100 µl of RLT buffer (Qiagen) 
and proceeded for RNA extraction. Briefly, 100 µl of RLT 
buffer with sorted EVs was mixed with 2 µl of pellet paint 
(Merck Millipore), vortexed briefly, 19 µl of 3 M Sodium 
Acetate (pH 5.5) and 300 µl of 100% ethanol was added 
and vortexed briefly and incubated at + 4  °C overnight. 
The contents were then centrifuged at 16,000 g for 15 min 
at 4 °C and the supernatant wascarefully discarded with-
out disturbing the pellet. The pellet was washed twice 
with fresh 1 ml of 80% ethanol and air dried. The pellet 
was resuspended in 10 µl of RNase free water and stored 
at -80 °C till further use.

Small RNA library construction and data analysis
The small RNA transcriptome library was constructed 
for the EV’s from both the JAr and HEK293 cell lines,as 
described in the protocol published by Faridani et. al. 
[40, 41], using 3  µl of extracted whole RNA from EV’s 
and HEK293cells. The amplified libraries were then puri-
fied using AMPure XP beads with 1:1 ratio of sample to 
beads as per the manufsacturer’s protocol and eluted in 
10 µl of RNase free water. DNA quantification was done 
using Qubit HS DNA analysis (Thermo Scientific) and 
the DNA library quality control was performed on Bio-
analyzer 2100 station (Agilent). 5 ng of DNA from each 
sample was pooled and sequenced 1 × 100 bp using Illu-
mina NovaSeq platform (National Genomics Infrastruc-
ture, SciLifeLab, Sweden).

The initial data analysis was performed on the Partek 
Flow bioinformatics software (Partek Inc, USA). Briefly, 
all the fastq files were screened and the contaminating 
reads from the mitochondrial DNA and ribosomal DNA 
were removed. Theunique molecular identifiers (UMI’s) 
were removed from the sequences and appended to 
the read names for later analysis. Adapters and poly(A) 
sequences were removed from the reads and the trimmed 
reads were aligned to human genome Hg38 using Bowtie 
2 aligner with a seed length of 10 and seed mismatch of 
1nt. Post alignment the UMIs were deduplicated and the 
reads were quantified to Hg38 miRBase mature miRNAs 
database, version 22.

Identification of putative JAr‑specific miRNAs and their 
putative targets in RL95 cells
To identify putative JAr EV-specific miRNAs, we exam-
ined miRNA alignment counts from three small RNAseq 
libraries derived from JAr EVs (total genome-mapped 
reads: 1,359,431) alongside three derived from HEK-
293EVs (total genome-mapped reads: 1,912,942). The 
dataset was filtered to retain miRNAs which were 
detected in at least 2/3 libraries of either of JAr or 
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HEK293EVs. We subsequently counted the number of 
miRNAs which were detected above raw counts thresh-
olds of 1, 3, 5, and 10 in the required number of samples. 
For downstream analysis, miRNAs were considered spe-
cific to JAr EVs if they were represented by at least five 
counts in 2/3 JAr EV libraries while not being detected at 
all in any of the HEK293EV libraries.

We obtained a list of all predicted target transcripts 
from miRDB [42]. These were filtered to retain only high-
confidence targets (those with a target score of ≥ 90). 
Using the R package AnnotationDbi [43], REFSEQ tran-
script IDs were converted to ENSEMBL gene IDs to 
obtain the list of predicted miR targets at the gene level. 
We were thus able to identify putative miRNA targets 
in the RL95-2 gene expression dataset by matching the 
ENSEMBL IDs. We subsequently counted the number of 
putative targets within the RL95-2 gene expression data-
set that were downregulated, upregulated, and non-DE 
for each miRNA.

Focusing on downregulated putative targets, we 
then sought to ascertain whether the abundance of a 
given miRNA from EVs corresponded with the extent 
of repression of downregulated targets in RL95-2. We 
obtained the mean counts per million (CPM) value for 
each miRNA in JAr EVs and the mean log2FC of down-
regulated putative target genes for each miRNA. We 
then performed a weighted Pearson’s correlation using 
the R package ‘weights’ (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​weigh​ts/​index.​html)​,where​by each miRNA was 
weighted according to the number of downregulated tar-
gets (Fig. 1).

Experimental design
Investigating the RNA cargo of extracellular vesicles
JAr and HEK293 cells were cultured and spheroids 
were formed according to the methods and conditions 
described above. Approximately 1 × 105 spheroids were 
prepared from each cell type. Once the spheroids were 
fully formed, they were transferred into 60  mm dishes 
containing 5 ml EV depleted culture media (5,000 sphe-
roids per dish). Spheroids were incubated in a slow rotat-
ing gyratory shaker for 24 h to stop the spheroids from 
losing the structural cohesion. After incubation, condi-
tioned media (approximately 100 ml) were collected and 
EVs were isolated. After removing the EVs used for sup-
plementation, remaining EVs (approximately 1 × 1012 EVs 
per each sample) were subjected to RNA extraction and 
mRNA sequencing was performed. Samples were pre-
pared in three different days for EV supplementation and 
mRNAseq. Samples used for miRNA sequencing were 
prepared separately and a minimum of 1 × 107EVs were 
used for miRNA sequencing for each sample in three bio-
logical replicates for each group.

Determining the effects of JAr and HEK293 cell derived EVs 
on RL95‑2 cellular transcriptome
Endometrial analogue (RL95-2) cells were cultured in 
12 well plates until 80% confluency using the culture 
methods and conditions described above. At the desired 
confluency, growth media was removedand 1 × 108 EVs 
derived from trophoblast analogue (JAr) and non-repro-
ductive cellular spheroid (HEK293) cells, were added to 
the RL95-2 cell monolayer separately in an EV-depleted 

Fig. 1  Experimental design of the study. Extracellular vesicles (EV) were isolated from trophoblast (JAr) spheroids and non-trophoblast (HEK293) 
spheroids. The miRNA cargo of the isolated EVs was explored using miRNA sequencing. EVs were supplemented to the endometrial analogue 
(RL95-2) cells and the transcriptomic alterations of the RL95-2 cells were investigated using RNA sequencing

https://cran.r-project.org/web/packages/weights/index.html),whereby
https://cran.r-project.org/web/packages/weights/index.html),whereby
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supplementation media. Controls were prepared using 
untreated RL95-2 cells cultured in EV-depleted media. 
Cells were incubated for 24  h. After incubation, the 
media was removed and cellular RNA was collected for 
sequencing. The experiment was performed on three dif-
ferent days to prepare the three biological replicates.

Results
JAr cell derived EVs induced significantly differentiated 
gene expression in RL95‑2 cells while HEK293 cell derived 
EVs failed to induce a similar effect
JAr cell spheroid-derived EVs and HEK293 cell spheroid-
derived EVs were supplemented to RL95-2 cell monolay-
ers separately and incubated for 24  h. Control samples 
were prepared using untreated RL95-2 cells. After incu-
bation, the cellular RNA was extracted and sequenced for 
mRNA expression. Differential expression was calculated 
with reference to untreated control (R). The expression 
profile of RL95-2 cells treated with JAr spheroid derived 
EVs (RJ) was clearly different from the untreated control 
(R) and the RL95-2 cells treated with HEK293 spheroid-
derived EVs (RH) (Fig. 2A). One of the RH samples was 
excluded from this analysis as an outlier (supplementary 
Figure 1). Nevertheless, it is apparent that the untreated 
RL95-2 cells and RL95-2 cells treated with HEK293 EVs 
are clustered relatively closely together, indicating that 

there was little or no effect on RL95-2 cells from HEK293 
derived EVs. Differential expression (DE) analysis of the 
RJ and R group yielded 1166 upregulated and 588 down-
regulated genes in RJ group compared to the untreated 
RL95-2 cells.Similar analysis comparing R and RH group 
did not yield any significant differential expression. The 
similarity between the R and RH groups is abundantly 
clear based on the expression levels of aforementioned 
DEGs (Fig.  2B). The results of DE analysis suggest that 
JAr spheroid derived EVs can induce significant changes 
in RL95-2 transcriptome while the HEK293 derived EVs 
lack that capability.

Gene set enrichment analysis of JAr EV‑targeted genes 
in RL95‑2
The most significantly enriched pathways in RL95-2 cells 
supplemented with JAr EVs are listed in the Table 1.

Two major pathways, ECM organization (R-HSA-
1474244) and signalling by GPCR (R-HSA-372790) 
were significantly affected by JAr EVs effects on 
RL95-2 cells. Other significantly affected pathways 
are events of the two major pathways, for instance, 
the pathway GPCR downstream signalling (R-HSA-
388396) is one of the two first level events of the sig-
nalling by GPCR pathway. Other significantly enriched 
pathways indicated in the table are events of ECM 

A B

Fig. 2  Gene expression profile of RL95-2 cells supplemented with JAr EVs and HEK293 EVs. (A) Principal component analysis (PCA) of all genes 
considered expressed in either of the three groups: RL95-2 cells supplemented with JAr EVs (RJ), RL95-2 cells supplemented with HEK293 EVs (RH), 
and un-supplemented control RL95-2 cells (R). The first two principal components (PC) are presented. (B) Heatmap and unsupervised hierarchical 
clustering (Euclidean distance) of the 1,787 differentially expressed genes. (DEGs) in the RJ vs R comparison
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organization (R-HSA-1474244) pathway, such as col-
lagen formation (R-HSA-1474290). The net positive 
Normalized Enrichment Score (NES) values of these 
pathways indicate that the genes involved in them 
were mostly upregulated in RL95-2 cells supplemented 
with JAr EVs, suggesting that the pathways them-
selves could also have been induced as the result of EV 
supplementation.

JAr spheroid derived EVs carry distinct mRNA cargo 
compared to HEK293 cell derived EVs
EVs were isolated from JAr and HEK293 spheroid con-
ditioned media using size exclusion chromatography. 
EV RNA was extracted and the mRNA cargo of the EVs 
were sequenced. Enrichment of mRNA was calculated by 
contrasting the abundance of JAr EV mRNA to the abun-
dance of HEK293 EV mRNA using edgeR as previously 

Table 1  Results of GSEA based on the differential expression analysis of RL95-2 cells treated with JAr EVs

Results of GSEA based on the differential expression analysis of RL95-2 cells supplemented with EVs compared to non-supplemented control group RL95-2 cells. 
Normalized Enrichment Score (NES) and False Discovery Rate (FDR) are presented

Reactome ID Description NES FDR

R-HSA-372790 Signalling by G-protein coupled receptor (GPCR) 1.267 0.010

R-HSA-388396 GPCR downstream signalling 1.289 0.010

R-HSA-1474228 Degradation of the extracellular matrix (ECM) 1.479 0.010

R-HSA-1474244 Extracellular matrix organization 1.448 0.010

R-HSA-1474290 Collagen formation 1.490 0.010

R-HSA-216083 Integrin cell surface interactions 1.549 0.010

R-HSA-3000171 Non-integrin membrane-ECM interactions 1.456 0.011

R-HSA-3000157 Laminin interactions 1.568 0.019

R-HSA-3000178 ECM proteoglycans 1.441 0.051

Fig. 3  The contrast between RNA cargo of JAr EVs and HEK293 EVs. (A) Principal component analysis (PCA) of all genes for which RNA fragments 
were detected in the total RNA of either the JAr EVs (JAr) or HEK293 EVs (HEK293). The first two principal components (PC) are presented. Clear 
separation of HEK293 samples from the JAr samples can be seen along the PC1 axis. (B) Differential enrichment of RNA fragments aligning to 
known gene loci in the JAr EVs and HEK293 EVs. Genes for which the RNA fragments in JAr EVs were enriched compared to HEK293 EVs (FDR ≤ 0.05, 
log2FC > 1) are coloured orange. Genes for which the RNA fragments in JAr EVs were depleted compared to HEK293 EVs (FDR ≤ 0.05, log2FC < -1) 
are coloured blue
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described. The population of RNA fragments aligning to 
known genes was substantially different between the JAr 
EV RNA and HEK293 EV RNA (Fig. 3A). 400 genes were 
found to be significantly enriched among the EV RNA 
fragments at logFC > 1and FDR ≤ 0.05 in JAr EV while 
501 mRNA were significantly depleted at logFC < 1 and 
FDR ≤ 0.05 compared to HEK293 EV (Fig. 3B). Based on 
these data, the mRNA cargo appears to be significantly 
dependent on the type of cells producing the EVs.

JAr spheroid derived EVs carry distinct miRNA cargo 
compared to HEK293 cell derived EVs
JAr EVs were also distinguishable from HEK293EVs 
according to their miRNA content. The miRNA filtering 
criteria used for the analysis influenced both the total 
number of miRNAs detected in either of the two EV 
types examined (Fig.  4A) and the number of miRNAs 
which were unique to either JAr or HEK293 EVs (Fig. 4B). 
When considering a read count threshold of five which 
had to be met in 2/3 libraries within a given group (JAr 
or HEK293), 11 microRNAs were detected only in JAr 
EVs while only two were detected in HEK293 EVs. These 
11 microRNAs were subsequently retained for further 
analysis of their target genes. miRNA abundance in JAr 
EVs correlates with fold change of downregulated target 
genes in RL95 cells.

For the 11 JAr-specific miRNAs, a total of 1,188 
high-confidence putative gene targets were identi-
fied from miRDB database and applying a target score 
cut-off of 90. Of these, 744 were present within the 
RL95 gene expression dataset. Only a small propor-
tion of these genes were differentially expressed, with 
53 of them downregulated and 68 of them upregulated.
Although more putative targets were upregulatedthan 
downregulated,putative miRNA targets constituted a 
higher percentage of total downregulated genes (9%) 
compared to both total upregulated(5.8%) and total 
non-differentially expressed genes (6.4%). Furthermore, 
six out of the eleven miRNAs had a greater number of 
targets which were downregulated than upregulated, 
while only four had a greater number of upregulated 
than downregulated targets (Fig.  5A). hsa-miR-524-5p 
had the largest number of putative targets represented 
in the expression dataset, the 26 downregulated targets 
of which constituted 4.4% of the total downregulated 
genes.

Although the number of miRNAs examined was low, 
the mean log2FC of downregulated target genes dis-
played a moderate negative correlation with the abun-
dance of a given miRNA in JAr EVs (weighted Pearson’s 
correlation, r = -0.65, p = 0.041; Fig.  5B). The most 
abundant JAr-specific miRNA was has-miR-1323, the 

Fig. 4  miRNA content of JAr and HEK293 EVs. Number of miRNAs detected in at least 2/3 libraries of one of the two EV types at four raw counts 
thresholds, i.e., at count’s threshold of 10 each miRNA needs to be counted at least 10 times in 2/3 libraries of either HEK293 or JAr EVs(A). Numbers 
of miRNAs considered to be unique to HEK293 or JAr EVs after passing four raw counts thresholds in at least 2/3 libraries of one of the two EV 
types(B). miRNAs were considered unique if they passed the required counts criteria for one EV type but were not detected at all in any of the 
libraries of the other EV type
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downregulated targets of which had the lowest log2FC 
of all miRNAs except for hsa-miR-526b-5p, which 
had only one downregulated target.The negative cor-
relation was found to be influenced both by the target 
score cut-off and FDR cut-off used to detect downregu-
lated genes, with no such correlations evident at more 
relaxed criteria (supplementary Figure 2).

We also examined whether any downregulated genes 
constituted high-confidence predicted targets of multiple 
miRNAs. In this regard, we found only twodownregu-
lated genes that were the putative targets of at least three 
JAr-specific miRNAs: ATF2 (predicted target of hsa-
miR-524-5p, hsa-miR-520a-5p, and hsa-miR-525-5p) and 
SPTSSA (predicted target of hsa-miR-524-5p, hsa-miR-
526b-5p, and hsa-miR-1323), respectively.

Target prediction analysis was not carried out for the 
transcriptome of RL95-2 cells treated with HEK293 
derived EVs because there was no significant differential 
expression observed.

Discussion
EVs are known to transport various molecules between 
cells and alter the biochemical and physiological state of 
the target cells [44–46]. Despite the increasing popularity 
and the ever increasing knowledge of EV-mediated inter-
cellular communication [47], the specificity of the effect 
induced by EVs on target cells and the mechanism of EV-
mediated communication is not yet well understood. In 

the current study we endeavoured to study the effect of 
JAr spheroid derived EVs (an analogue for pre-implanta-
tion embryo) and HEK293 spheroid derived EVs (a cell 
line of non-reproductive origin) on RL95-2 cells, ana-
logue of WOI-status endometrium.

JAr EVs induced substantial alterations to the RL95-2 
cells’ transcriptome. Interestingly, EVs derived from a 
non-reproductive cell line, HEK293, failed to induce a 
similar profile of differential expression in the RL95-2 
cells (Fig.  2), thus demonstrating that trophoblast-like-
cell derived EVs are uniquely capable of altering the tran-
scriptome of endometrial cells.The specificity of EVs is 
a topic of intense scientific discourse [48]. Some reports 
[49, 50] posit that EVs are highly targeted and will only 
act on a specific type of cell or a tissue. However, other 
reports [51–53] suggest that EVs are indiscriminately 
uptaken by any type of the cells. In the current study we 
have demonstrated that trophoblast-like cell derived EVs 
exhibit functional specificity. Studies on functional speci-
ficity of EVs are conducted, to a large degree, in the field 
of cancer metastasis where EVs derived from cancerous 
cells are reported to regulate the reaction of target cells 
in metastasis [54, 55]. To the best of our knowledge, this 
is the first report of functional specificity of EVs in the 
context of embryo-maternal communication. This com-
pelling effect could be attributed to either the selective 
uptake of JAr-EVs, when compared to HEK293 derived 
EVs by RL 95–2 cells or to the differences between the 
EV cargo of JAr and HEK293 EVs. Since in this study the 

Fig. 5  (A) Eleven miRNAs identified as specific to JAr EVs and their corresponding numbers of putative high-confidence (miRDB target score ≥ 90) 
gene targets present in the RL95 gene expression dataset. Numbers of non-differentially expressed (grey bars), downregulated (blue) and 
upregulated target genes (orange) are shown. (B) Relationship between abundance of JAr-specific miRNA in JAr EVs (expressed as mean log2cpm, 
derived from three libraries) and the mean log2FC of downregulated (FDR ≤ 0.05) putative high-confidence targets (target score ≥ 90) in RL95 cells. 
The number of downregulated putative targets for each miRNA is represented by the point size. Weighted regression line (weighted by number of 
downregulated targets) with 95% confidence intervals of the mean are shown
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JAr/RL95-2 model was used to mimic the pre-implanta-
tion uterine microenvironment, we could deduce that the 
transcriptomic changes induced by EVs are not random, 
but specific to embryo derived EVs and have functional 
significance for embryo-maternal communication.

The probable functional importance of the JAr EVs’ 
effect on RL95-2 cells is more apparent when consid-
ering the pathways affected by the DEGs (Table 1). For 
example, the majority of the events of the extracellular 
matrix (ECM) organization pathway (R-HSA-1474244) 
were tagged by the genes upregulated in the RL95-2 
cells treated with JAr EVs. ECM remodelling is a criti-
cal morphological and biochemical alteration the endo-
metrium undergoes in preparation for implantation. It 
promotes and stabilizes the embryo adhesion while pro-
tects the underlying stromal cell layer from over inva-
sion by the extravillous trophoblasts [56–58]. Major 
components of the pathways, such as laminin interac-
tions (R-HSA-3000157) [59, 60], integrin cell surface 
interactions (R-HSA-216083) [61–66], and non-integrin 
membrane-ECM interactions (R-HSA-3000171) [67] are 
all known to be implicated in endometrial modifications 
in the WOI.

The pathway of signalling by GPCRs (R-HSA-372790) 
was also found to be significantly enriched by DEGs. 
GPCRs are the largest family of transmembrane receptors 
accounting for 4% of the coding regions of the human 
genome [68]. They are known to bind a highly diverse set 
of ligands that perform biological functions ranging from 
sight and olfactory senses to immune regulation [69, 70]. 
They also act as receptors for a number of ligands known 
to alter the endometrial microenvironment during the 
WOI [71], such as hCG [72], prostaglandin E2 [73, 74], 
cytokines [75–77] and progesterone via its membrane 
bound receptor [78–80]. Downstream signalling of GPCR 
pathway (R-HSA-388396) is also significantly enriched by 
the DEGs. These downstream pathways are secondary 
messengers that modify the endometrial morphology to 
facilitate implantation. For example, phosphatidylinositol 
3-kinase/protein kinase B (PI3K/Akt) which regulates cell 
growth and survival, is reported to be involved in endo-
metrial cellular migration, which is crucial in embryo 
attachment and invasion [81–84]. Evidence from the 
top pathways resulting from GSEA leads to the notion 
that the transcriptomic changes induced by JAr EVs on 
RL95-2 cells are not only directly modifying the endome-
trium for imminent implantation, but also modifying and 
priming the endometrial membrane receptors for further 
reception of embryonic signals, such as hormones and 
cytokines.

We investigated the RNA contents of the EV popula-
tions derived from JAr and HEK293 cells to collect data 
about the mechanism of EV induced transcriptomic 

changes. Identification of the RNA cargo of the two 
types of EVs by sequencing mRNA and miRNA was 
the first step of the investigation. There were signifi-
cant (FDR ≤ 0.05) differences between mRNA found in 
JAr and HEK293 EVs indicating that the two EV popu-
lations are distinct from each other (Fig.  3). However, 
we were not able to confirm any connection between 
the observed transcriptomic alterations and the mRNA 
cargo of EVs.

In addition to mRNA, JAr EVs differed from HEK293 
EVs in their microRNA composition. miRNAs are 
regulators of gene expression which uses multiple 
mechanisms to inhibit, destabilize and cleave tran-
scripts [85–87]. There are about 1115 miRNAs iden-
tified and characterized which target about 60% of 
the human genes [88–90]. It is well-documented that 
miRNAs play important roles in cell-to-cell commu-
nication [91–93] and numerous studies have further 
demonstrated the role of EVs in transporting miRNAs 
to facilitate intercellular signalling. When applying a 
reasonable counts threshold (5 counts in 2/3 libraries 
of either JAr or HEK293), we identified eleven micro-
RNAs in JAr EVs which were not detected in HEK293 
EVs. Interestingly, while substantially more JAr-spe-
cific miRNAs could be detected while applying lower 
counts thresholds, relaxing the counts threshold did 
not substantially influence the number of HEK293-
specific miRNAs in EVs, suggesting that the majority 
of miRNAs present in HEK293 EVs are indeed also 
present in JAr EVs. We reasoned that the 11 microR-
NAs could be considered to be JAr-specific and were 
retained for downstream target analysis. Although the 
ability to detect differences between the miRNA pro-
files of different EV types is highly influenced by tech-
nical factors such as read depth and filtering criteria 
[94–98], multiple reports nevertheless corroborate the 
presence of contrasting miRNA profiles in populations 
of EVs isolated from different cell types and biological 
fluids [23, 99, 100]. These differences, if present, could 
aid in interpreting the observed EV induced effects on 
RL95-2 cellular transcriptome.

Although we hypothesized that some gene expression 
changes may be putatively linked with miRNAs pre-
sent in JAr EVs, the finding that the majority of gene 
expression changes constituted upregulation suggests 
that canonical miRNA-induced silencing is not the pri-
mary mode of action by which JAr EVs modulate gene 
expression changes in target cells. Indeed, we believe 
that the 11 microRNAs identified as JAr-specific had 
high-confidence putative targets among both downreg-
ulated and upregulated genes in RL95-2 cells. Moreo-
ver, in the absence of any miRNA-induced silencing, we 
would expect the relative proportions of downregulated 
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and upregulated putative targets to reflect the rela-
tive proportions of overall up- and down-regulation of 
genes, which was not the case in our results. Indeed, 
most JAr-specific miRNAs had more high-confidence 
predicted targets that were downregulated than upreg-
ulated, and miRNA targets constituted a higher pro-
portion of downregulated genes compared to either 
upregulated or non-DE genes. Furthermore, the log2FC 
of downregulated putative targets negatively correlated 
with the abundance of 11 miRNAs detected in JAr EVs, 
with the putative targets of the most abundant JAr-
specific miRNA (hsa-miR-1323) showing the strongest 
decrease in mean log2FC. Collectively, these obser-
vations suggest that at least some of the downregula-
tion may have been a direct result of canonical miRNA 
silencing. We also note that, as we co-incubated EVs 
with RL95-2 cells for 24 h, we cannot exclude the pos-
sibility that at least for some of the increased expres-
sion levels were caused by the secondary effects of 
EV-derived miRNAs.

The majority of the observed DEG’s cannot be 
explained as a direct effect resulting from either mRNA 
or miRNA transported to the recipient cells via EVs. Con-
sidering the relatively small copy number of RNAs trans-
ported in EVs, attributing the substantial degree of DE to 
direct effects of EV RNA on target cells would be illogical 
[101, 102]. However, based on the results of the current 
study, the role played by EVs, and specifically JAr-derived 
EVs as the mediator of the effect is clear, even though the 
molecular mechanisms underlying the majority of the 
transcriptomic changes remain elusive. It can be specu-
lated that other types of regulatory mechanisms such as 
biomolecules bound to the EV surface, other non-coding 
RNAs, transcription regulation enzymes or cytokines 
carried in the EVs could play a role in the observed effects 
on endometrial transcriptome.

The phenomenon of functional specificity of EVs was 
clearly demonstrated in our experiments. However, 
it remains unclear to what extent the observed differ-
ences in RNA cargo between the two EV types (JAr and 
HEK293) can account for the transcriptomic changes 
observed in the target cells. It might be possible to reveal 
a clearer picture of this form of intercellular communi-
cation if this effect would be measured in detailed series 
of time points.Also, future studies would be required to 
explore the issue of EVs’ functional specificity via other 
avenues of investigations, such as the degree of uptake 
specificity exhibited by the RL95-2 cells towards troph-
oblast-like-cell and non-trophoblast spheroid derived 
EVs,the surface proteome differences between the two 
types of EVs which could play a role in membrane-based 
intercellular signalling, differences in EV cargo other 
than regulatory RNA, the mechanisms employed by the 

target cells to interpret the signals delivered by EVs and 
the target specificity of trophoblast spheroid derived EVs 
in terms of target cells of reproductive and non-repro-
ductive origin.

Conclusions
We have shown that trophoblast-like-cell derived EVs 
were capable of inducing unique transcriptomic altera-
tions in target endometrial cells. These changes were 
only induced by trophoblast-like-cell derived EVs, 
implying functional specificity of these EVs.Some of the 
observed changes, such as those associated with extracel-
lular matrix remodelling and GPCR mediated signalling, 
may be indicative of functional components of embryo-
maternal communication in implantation.This effect was 
unique to the trophoblast-like-cell derived EVs compared 
to EVs from a non-reproductive source, which may be at 
least partly due to the distinct RNA cargo of the EVs from 
the two sources. However, as the RNA composition of 
JAr EVs could be putatively linked with only a small pro-
portion of gene expression changes, future studies should 
aim to explore the role of different molecular pathway-
sunderlying EV-mediated transcriptomic changes, as 
well as further elucidate their functional role in embryo-
maternal communication.
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