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Abstract

Background: Heat stress (HS) occurs when body heat accumulation exceeds heat dissipation and is associated with
swine seasonal infertility. HS contributes to compromised oocyte integrity and reduced embryo development.
Autophagy is a potential mechanism for the oocyte to mitigate the detrimental effects of HS by recycling damaged
cellular components.

Methods: To characterize the effect of HS on autophagy in oocyte maturation, we utilized an in vitro maturation
(IVM) system where oocytes underwent thermal neutral (TN) conditions throughout the entire maturation period
(TN/TN), HS conditions during the first half of IVM (HS/TN), or HS conditions during the second half of IVM (TN/HS).

Results: To determine the effect of HS on autophagy induction within the oocyte, we compared the relative
abundance and localization of autophagy-related proteins. Heat stress treatment affected the abundance of two
well described markers of autophagy induction: autophagy related gene 12 (ATG12) in complex with ATG5 and the
cleaved form of microtubule-associated protein 1 light chain 3 beta (LC3B-ll). The HS/TN IVM treatment increased
the abundance of the ATG12-ATG5 complex and exacerbated the loss of LC3B-Il in oocytes. The B-cell lymphoma 2
like 1 protein (BCL2L1) can inhibit autophagy or apoptosis through its interaction with either beclin1 (BECNT1) or
BCL2 associated X, apoptosis regulator (BAX), respectively. We detected colocalization of BCL2L1 with BAX but not
BCL2L1 with BECN1, suggesting that apoptosis is inhibited under the HS/TN treatment but not autophagy.
Interestingly, low doses of the autophagy inducer, rapamycin, increased oocyte maturation.

Conclusions: Our results here suggest that HS increases autophagy induction in the oocyte during IVM, and that
artificial induction of autophagy increases the maturation rate of oocytes during VM. These data support
autophagy as a potential mechanism activated in the oocyte during HS to recycle damaged cellular components
and maintain developmental competence.
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Summary sentence

Heat stress induces autophagy in the pig oocyte during
oocyte maturation, and autophagy is a potential mechan-
ism by which the oocyte mitigates cellular stress.

Background

Heat stress (HS) occurs when heat dissipation methods
are exceeded by both internal and external heat accumu-
lation [1, 2]. Attempts to maintain euthermia during HS
leads to perturbations in physiological processes, such as
reduced feed intake, blood flow redistribution to the per-
iphery, and endocrine changes. Collectively these adapta-
tions reduce growth performance, reproductive ability,
and alter body composition [3, 4]. These detrimental ef-
fects of HS create a financial burden on swine producers
and animal agriculture in general. Almost two decades
ago, St. Pierre et al. [5] predicted that the combined ef-
fects of HS accounted for an approximately $2 billion
loss in United States livestock industries. In addition, the
economic burden of HS on the United States swine in-
dustry alone has been estimated to be $900 million per
year [6].

A large portion of the financial burden caused by HS
can be explained by a decrease in reproductive efficiency
[4]. HS reduces oocyte developmental competence, and
induces apoptosis in in vitro fertilized and parthenogen-
etically activated porcine embryos [7-9]. Oocyte meiotic
competence appears to be particularly sensitive to HS, as
both pig and bovine oocytes halt meiotic resumption
under HS [10, 11]. Furthermore, HS has been shown to
impair the gap junctions between oocytes and the sur-
rounding cumulus cells [12, 13]. For oocytes to remain
viable, a mechanism is required to maintain homeostasis
and mitigate deleterious effects.

Autophagy is a potential stress mitigation response, as
it is the process by which damaged cellular components
are recycled. There are three major types of autophagy:
chaperone-mediated autophagy, microautophagy, and
macroautophagy. Macroautophagy (referred to hereafter
as autophagy) accounts for the largest amount of cellular
resource recycling of the three different types [14]. Au-
tophagy is the sequestration of cytoplasm into a double-
membraned cytosolic vesicle, the autophagosome, that
fuses with a lysosome to form an autolysosome for deg-
radation by lysosomal hydrolases [15]. The steps of au-
tophagy can be broken down into induction,
autophagosome formation, autophagosome-lysosome fu-
sion, and degradation [16]. These processes are marked
by the formation of large protein complexes, and much
of the regulation occurs post-translationally [17, 18].

During autophagy, Beclin 1 (BECN1) plays a key role
in sequestering the nascent lipid membrane that will
eventually form the autophagosome [19, 20]. The exten-
sion of the autophagosomal membrane around targeted
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cell debris occurs through two different pathways: One
pathway includes the formation of the Autophagy re-
lated (ATG)12-ATG5-ATG16 complex, where ATG7
acts like an El-activating enzyme to conjugate ATG12
to ATG5 [21, 22]. The second ubiquitin-like conjugation
pathway results in the cleavage of microtubule-
associated proteins 1 light chain 3 alpha/beta (LC3A/B),
exposing a glycine residue at the C-terminal end. This
process results in the conjugation of LC3 with phospha-
tidylethanolamine (PE), ultimately forming LC3-II [23],
which is a well described marker of mammalian autoph-
agy [24, 25].

Autophagy and apoptosis are regulated in tight coord-
ination, partly through B-cell lymphoma 2 (BCL2) family
member proteins, important regulators of apoptosis dur-
ing mammalian ovary development [26—30]. The dual
role of BCL2 family members to regulate both autophagy
and apoptosis is mediated by the ability of BCL2 and
BCL2 like 1 (BCL2L1; also known as BCL-XL) to pre-
vent apoptosis by inhibiting the formation of mitochon-
drial pores that release cytochrome C, via interaction
with BCL2 associated X, apoptosis regulator (BAX) [31],
while BCL2 and BCL2L1 can also interact with BECN1
to regulate autophagy [32, 33].

Both basal and stress-induced autophagy have been
observed in the embryo and oocyte. Deficiencies in
autophagy-related genes negatively affect both early and
late stage embryonic development [34—37] and embryos
can also respond to external stressors by inducing au-
tophagy [38, 39]. In the oocyte, autophagy related gene 5
(Atgb) knock-out mice fail to develop past the 4-cell em-
bryonic stage [40]. Furthermore, LC3-II is detectable
during initial culture of pig oocytes [41], and BECNI1 has
been observed in the mouse oocyte [42].

Autophagy represents a potential molecular mechan-
ism by which the oocyte could mitigate the detrimental
effects of HS. We have previously utilized an in vivo
model to demonstrate that HS affects autophagy-related
proteins in the pig ovary, increases the abundance of
autophagosome-like structures in follicles, as well as in-
creases BCL2L1 in the ovary [43]. Our working hypoth-
esis is that HS upregulates the autophagy pathway in the
oocyte, and thus our study objective was to characterize
the induction of autophagy in response to HS during
in vitro maturation.

Methods

In vitro maturation

Pig ovaries were obtained from a local abattoir for isola-
tion of cumulus-oocyte-complexes (COCs) to be sub-
jected to in vitro maturation (IVM) [44, 45]. Briefly,
follicles (2—4 mm) were aspirated and COCs were col-
lected and washed in TL-Hepes with 0.1% polyvinyl al-
cohol (PVA). Cumulus oocyte complexes were cultured
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in maturation media (Tissue Culture Media 199 (TCM-
199)) containing 0.57 mM L-cysteine, follicle stimulating
hormone (0.5 pg/mL), luteinizing hormone (0.5 pg/mL),
and epidermal growth factor (10ng/mL) for approxi-
mately 42 h at 38.5°C in 5% CO,. Prior to IVM, a repre-
sentative sample of germinal vesicle-intact (GV) stage
oocytes for each replication were randomly selected
from the COC pool. Identification of polar body was
performed with phase-contrast light microscopy. Oo-
cytes used for analysis were stripped of cumulus cells via
gentle vortex (6 to 8 min) in 1% hyaluronidase in TL-
Hepes-PVA and washed in TL-Hepes-PVA. To observe
the effect of HS on IVM of oocytes, oocytes underwent
three different IVM temperature treatments: 1) TN con-
ditions (38.5 °C) for the entirety of 42 h (TN/TN), 2) TN
conditions for the first 21 h of IVM followed by HS
(41 °C) conditions for the following 21 h (TN/HS), or 3)
HS conditions for the first 21 h of IVM followed by TN
conditions for the following 21h (HS/TN). Following
IVM oocytes were stripped of cumulus cells by vortexing
5-6 min in TL-Hepes-PVA supplemented with 1% hyal-
uronidase and washed in TL-Hepes-PVA.

To characterize the temporal change in abundance of
LC3B-1I, oocytes were matured under either the TN/TN
or HS/TN treatments. A pool of oocytes was collected
before introduction into maturation media (0-h). Oo-
cytes were collected after 21 h of either TN (21-h TN)
or HS conditions (21-h HS). The remainder of the oo-
cytes that had experienced 21 h of TN conditions were
allowed to continue maturation under TN conditions for
a total of 42 h (42-h TN/TN), and the remainder of the
oocytes that had experienced 21 h of HS conditions con-
tinued maturation under a subsequent 21 h of TN con-
ditions, for a total of 42 h (42-h HS/TN).

Western blot analysis

Pools of 50 denuded oocytes per replicate were collected
as described above after 21 or 42 h of IVM. Oocyte pools
were lysed in 5pL of Laemmli sodium dodecyl sulfate
buffer at 95°C for 4 min followed by 1 min on ice and
then centrifugation at 1000 rpm for 1min at room
temperature. Lysates from fifty oocytes were loaded per
lane of a 4-20% Tris glycine gel (Lonza PAGEr Gold
Precast Gels). The BioRad Mini PROTEAN Tetra Sys-
tem was used to separate protein homogenates at 60 V
for 30 min followed by 120V for 90 min. The protein
was transferred to a nitrocellulose membrane for 1h at
100V at 4°C. Membrane blocking was conducted using
5% milk in phosphate buffered solution with 0.5% Tween
20 (PBST) for 1h at room temperature. A rabbit anti-
BECN1 (Cell Signaling Technology, 3495), rabbit anti-
LC3B (Cell Signaling Technology, 3868), rabbit anti-
ATGI12 (Cell Signaling Technology, 4181), rabbit anti-
BCL2L1 (Cell Signaling Technology, 2764), or normal
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rabbit IgG (Cell Signaling Technology, 2729) as a nega-
tive control were added (1:1000 dilution) to the mem-
brane in 0.5% milk in PBS overnight at 4 °C. Following
primary antibody incubation, the membranes were
washed with PBST (PBS with 0.1% Tween) three times
at room temperature for 10 min each. Donkey anti-
Rabbit IgG (Amersham ECL NA934) was incubated (1:
1000) with the membrane for 1 h at room temperature.
The membrane was then washed three times for 10 min
each at room temperature. Horseradish peroxidase sub-
strate (Millipore, Billerica, MA) was added to the mem-
brane for 1 min in the dark, and was exposed to x-ray
film and developed for visualization. Average pixel inten-
sity for the band corresponding to the primary antibody
was compared for each blot using Image Studio Lite (Li-
Core). Signal from detection of each protein of interest
was normalized to a-tubulin.

Rapamycin oocyte IVM and activation
Cumulus-oocyte-complexes were collected and sub-
jected to IVM under the HS/TN treatment as mentioned
above, with the addition of either DMSO vehicle control,
1.0 nM rapamycin, 10 nM rapamycin, or 100 nM rapa-
mycin. In addition to rapamycin, IVM media for this
study contained 10 ng/mL leukemia inhibitory factor
(LIF; Sigma-Aldrich L5283), 40 ng/mL basic fibroblast
growth factor (Sigma-Aldrich F0291), and 20 ng/mL
insulin-like growth factor 1 (Sigma-Aldrich 136769).
After 21 h of HS IVM followed by a subsequent 21 h of
TN IVM, oocytes were denuded and healthy metaphase
II oocytes containing extruded polar bodies were
counted as a percent of total oocytes per treatment.
Pools of 50 metaphase II arrested oocytes were then
flash frozen in liquid nitrogen to be used for down-
stream analysis.

Oocyte fixation and immunohistochemistry

Oocytes were collected and denuded, as described above,
from different time points during IVM and then fixed and
mounted to slides as previously described [46, 47]. Briefly,
oocytes were fixed in 4% paraformaldehyde in PBS over-
night at 4 °C, and then transferred to 70% ethanol in PBS
at 4°C. Oocytes were permeabilized in 0.5% Triton X-
100™ (Sigma-Aldrich, St. Louis, MO) for 30 min at room
temperature. Next, oocytes were blocked in 5% bovine
serum albumin (Sigma-Aldrich, St. Louis, MO) for 45 min
at room temperature, then incubated with primary anti-
body overnight at 4 °C. After approximately 24 h, oocytes
were washed twice in PBS for 30 min, and incubated with
secondary antibody for 1 h at room temperature. The oo-
cytes were then washed twice in PBS for 30 min, and
mounted to microscope slides using SlowFade Gold
Mountant containing DAPI (S36939, ThermoFisher
Scientific, Pittsburgh, Pennsylvania).
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Colocalization of autophagy markers

To label proteins of interest for colocalization, rabbit
anti-BCL2L1 (Cell Signaling Technology, 2764S),
rabbit anti-BECN1 (Cell Signaling Technology,
3495S), mouse anti-BCL2L1 (Novus™, 46,569), and
mouse anti-BAX (Novus, 28,566) primary antibodies
were used at a 1:200 dilution. Secondary antibodies
used were anti-mouse IgG AlexaFluor 647 (Cell Sig-
naling Technology, 4410S) and anti-rabbit IgG FITC
(Life Technologies, F2765) at a 1:250 dilution. To
control for nonspecific binding of primary antibodies,
a pool of oocytes was incubated in normal rabbit IgG
(Cell Signaling Technology, 2729) and normal mouse
IgG (Cell Signaling Technology, 5415) at a 1:200 dilu-
tion instead of primary antibodies. A Leica SP5X MP
confocal microscope (Exton, PA) was used to image
antibody labeled proteins of interest.

Primary antibodies derived from different species were
used so that secondary antibodies with different fluoro-
phores would recognize and bind to the separate pri-
mary antibodies within the same fixed oocyte. This
made it possible to view two different fluorophores con-
jugated to secondary antibodies at different excitation
wavelengths. 30 oocytes per temperature treatment per
time point were visually assessed using a confocal micro-
scope. Three oocytes per temperature treatment per
time point of IVM were used in colocalization analysis
on sequential focal planes (step size of 1 pm) measuring
spatial fluorescence over approximately 50 um of each
oocyte. Fluorescence of DAPI stained chromatin, labeled
rabbit anti-BCL2L1 and mouse anti-BAX, or labeled
rabbit anti-BECN1 and mouse anti-BCL2L1 was
measured.

Statistical analysis

Statistical analysis of maturation rate, western blot
data, and co-fluorescence data was conducted using
PROC MIXED in SAS Enterprise Miner Workstation
version 14.1 (Carry, NC), where a standard student t-
test was used to compare statistical differences.
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Statistical significance was determined when P values
were less than or equal to 0.05. The PDC colocaliza-
tion plugin [48] in the Image] processing program
[49] was used to calculate Pearson’s and Spearman’s
correlation coefficient and scatter plots representing
colocalization of signal intensity collected from con-
focal microscopy of individual oocytes. Corresponding
z-stacks with blocks of pixels randomly scrambled
were used to determine that the probability of the
measured value for Pearson’s or Spearman’s correl-
ation between two color channels was significantly
greater than would be calculated if there was only
random overlap of the same information.

Results

Heat stress decreases oocyte maturation rate

To characterize the effect of HS on maturation, oocytes
underwent IVM during one of three temperature treat-
ments: TN conditions throughout the entire 42-h matur-
ation period (TN/TN), HS conditions during the second
half of IVM (TN/HS), or HS conditions during the first
half of IVM (HS/TN). Oocytes were subject to 21-h HS
intervals because we have previously observed that 42 h
of HS greatly decreases oocyte maturation and subse-
quent embryo development [50]. This also allowed us to
compare maturation rate of different temperature treat-
ments with downstream protein abundance and
localization. Both HS treatments decreased maturation
compared to TN/TN control, where the maturation rate
of TN/TN oocytes was 66.9 +5.0%, the maturation rate
of TN/HS oocytes was decreased to 44.9% +5.0% (P <
0.01), and the maturation rate of HS/TN oocytes was de-
creased to 33.2+1.6% (P<0.01; Table 1). The matur-
ation rate of HS/TN oocytes decreased compared to the
maturation rate of TN/HS (P < 0.05; Table 1). These are
comparable to previous results from our group [50].

Heat stress affects autophagy-related proteins

The abundance of BECNI, fomation of the ATG12-
ATGS5 complex, and the cleavage of LC3B was measured
via western blotting to characterize the effect of HS on

Table 1 Oocyte maturation to MII arrest under different temperature treatments

Treatment Group' Total Oocytes Percentage MII
Matured’ Arrested Oocytes’
TN/TN 269 67% +5.0°
HS/TN 242 33%+1.6°
TN/HS 315 44% + 5.0°

1Temperature treatment oocytes experienced during IVM: TN throughout the entire IVM (TN/TN) or HS during the first half (HS/TN) or second half (TN/HS) of IVM.

2Total number of GV oocytes matured for each treatment from four replicates.
3Percentage of MIl arrested oocytes from each treatment. Mean = SEM.

2bcyalues with different superscripts in the same column are significantly different (P < 0.05).
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autophagy induction in the oocyte. The abundance of
BECN1 and BCL2 like 1 (BCL2L1) were unaffected by
temperature treatment (Fig. 1A and B). The abundance
of ATG12 in complex with ATG5 was increased in oo-
cytes collected after 42h of IVM of each temperature
treatment (TN/TN, TN/HS, or HS/TN) compared to
GV-intact oocytes collected before IVM. There was in-
creased abundance (~ 1.5 fold; P<0.01) of ATGI12 in
complex with ATG5 after 42h of IVM under the HS/
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TN temperature treatment compared to the TN/TN
(P<0.01) and TN/HS (P < 0.01; Fig. 1A and B).

There was no effect of temperature treatment on
the abundance of LC3B II in oocytes after IVM with
any of the three temperature treatments (P >0.05).
Although, there was decreased LC3B-II in TN/TN
(P<0.01), TN/HS (P<0.01) and HS/TN oocytes (P<
0.01) compared to oocytes collected at Oh of IVM
(Fig. 1A and B). Compared to oocytes collected at O-

GV TN/TN TN/HS HS/TN
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Fig. 1 Heat stress during the first half of IVM increases the abundance of ATG12 in complex with ATG5. Oocytes collected from aspirated pig
follicular fluid underwent in vitro maturation (IVM) in either TN conditions throughout the entire 42-h maturation period (TN/TN), HS conditions
during the second half of IVM (TN/HS), or HS conditions during the first half of IVM (HS/TN). Representative western blots for BECN1, ATG12-ATG5
complex, BCL2L1, LC3B, and a-tubulin (A) from oocytes collected before IVM (GV) and after 42 h of IVM. There was increased abundance of ATG12
in complex with ATG5 after 42 h of IVM under the HS/TN temperature treatment compared to the TN/TN and TN/HS (B). Different superscripts
within the same protein denotes significant difference (P < 0.05)
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h, there was an approximately 24-fold lower abun-
dance of LC3B-II in oocytes collected after TN/TN
IVM, approximately 17-fold lower abundance in oo-
cytes collected after TN/HS IVM, and approximately
73-fold lower abundance of LC3B-II in oocytes col-
lected after HS/TN IVM (Fig. 1A and B).

The observed sharp decrease in LC3B-II due to
temperature treatment provided rationale for an IVM ex-
periment in which oocytes were collected after 21 h to de-
termine the temporal effects of HS on LC3B-II. Although
the abundance of LC3B-II did not differ between TN/TN
oocytes and HS/TN oocytes at 42h of IVM (P =0.92),
there was decreased abundance of LC3B-II after 21h of
HS (0.21+0.6 relative band intensity) compared to
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oocytes collected after 21h of TN (0.9 +0.26; P<0.01;
Fig. 2A and B). These data suggest that HS affects the
utilization of autophagy-related proteins in the oocyte.

BCL2L1, BAX, and BECN1 interactions

Because HS in the first half of IVM sharply decreased
oocyte LC3B-II, the interaction of BCL2L1 with either
BAX or BECN1 was determined to assess a potential
HS-induced regulatory mechanism. The TN/HS treat-
ment was not used in further experiments because it ap-
peared to have a lesser affect on LC3B-II turnover.
Oocytes that underwent IVM in either TN/TN or HS/
TN conditions were fixed for immunohistochemistry
(IHC) to determine BCL2L1, BECNI1, or BAX co-
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\ TN HS ‘ TN/TN HS/TN
LC3B-I - - _——— e e e
LC3B-I1 i S
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<
5o
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=
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)
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Fig. 2 Heat stress exacerbates the decrease of LC3B-Il in the oocyte. Oocytes collected from aspirated pig follicular fluid underwent in vitro
maturation (IVM) in either TN conditions throughout the entire 42 h maturation period or HS conditions during the first half of IVM (HS/TN).
Representative western blot for LC3B from oocytes having undergone TN or HS conditions in IVM after 21 or 42 h or collected before IVM (A).
There was decreased abundance of cleaved LC3B-II at 21 h of HS IVM compared with 21 h of TN IVM (B). Asterisks denotes significant difference
(P<0.05) from control
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localization. Based on the Pearson’s (rp) or Spearman’s (rs)
correlation coefficients, where a rp or rg closer to 1 is indica-
tive of co-localization (Table 2) and overlap of fluorescent
signal (Fig. 3A and B), neither the time point nor the
temperature treatment affected colocalization of BCL2L1
and BAX. Based on level of fluorescence, BAX was numeric-
ally increased, but not significantly increased, at 21 h of HS
compared to TN conditions (Fig. S2B). There were no effects
of time or temperature treatment on the abundance of
BCL2L1 based on level of fluorescence (Fig. S2C).

Based on the rp and rg correlation coefficients (Table 2)
and overlap of fluorescent signal (Fig. 4A and B), there
was little colocalization of anti-BECN1 and anti-BCL2L1
antibodies regardless of time point during IVM or
temperature treatment (Table 2). BECN1 staining ap-
peared punctate at all time points and temperature treat-
ment with no overlap with BCL2L1 staining (Fig. 4A and
B). There appeared to be more intense punctate BECN1
focal staining in oocytes (Fig. 4A and B). This data sug-
gests that BCL2L1 is participating in the regulation of
apoptosis in IVM oocytes under TN or HS conditions,
while not appearing to inhibit autophagy.

Low concentration of rapamycin increases maturation rate
To determine if inducing autophagy in oocytes during
HS increases the oocyte’s ability to mature to MII arrest,

Table 2 Correlation coefficients indicative of colocalizations
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oocytes underwent IVM while experiencing HS during
the first 21h and TN conditions the following 21h in
the presence of vehicle control, 100 nM, 10 nM, or 1 nM
rapamycin. Oocytes treated with all four concentrations
of rapamycin were subjected to the HS/TN IVM
treatment, based upon the effect of this temperature
treatment on ATGI12-ATG5 complex and LC3B-II
abundance. The maturation rate of oocytes in the pres-
ence of DMSO vehicle control was 50.0 £4.1, 43.6 £
5.6% for 100 nM rapamycin, 47.8 + 5.5% for 10 nM rapa-
mycin, and 65.8 +5.0% for 1 nM rapamycin (Fig. 5). In-
cluding 100 nM or 10 nM rapamycin in the IVM media
had no effect on maturation rate after HS/TN compared
to vehicle control (P=0.31 and P=0.72, respectively),
though oocytes matured in the presence of 1 nM rapa-
mycin had an approximately 1.3-fold increase in matur-
ation rate compared to vehicle control (P =0.03; Fig. 5).
This data suggests low concentrations of rapamycin may
provide the oocyte some resistance to HS and improve
their ability to reach MII arrest, potentially through in-
duction of autophagy.

Discussion

Autophagy is the process by which cellular components
are recycled and is activated by a variety of stressors
[51]. In autophagy, the autophagosome forms around

BCL2L1 and BAX

BCL2L1 and BECNI1

Hour of IVM!  Treatment’  Pearson’sR®>  Spearman'sR®  Pearson'sR’  Spearman'sR’
0 0.77 0.77 0.31 0.32
0.88 0.86 0.16 0.17
0.81 0.82 0.29 0.33
21 TN 0.75 0.67 0.28 0.34
™ 0.82 0.84 0.35 0.47
N 0.76 0.76 0.16 0.26
HS 0.76 0.77 0.29 0.36
HS 0.74 0.76 0.21 0.26
HS 0.76 0.76 0.47 0.53
42 TN/TN 0.72 0.71 0.31 0.34
TN/TN 0.76 0.77 0.30 0.28
TN/TN 0.74 0.76 0.36 0.39
HS/TN 0.76 0.77 0.23 0.29
HS/TN 0.74 0.76 0.38 0.45
HS/TN 0.76 0.76 0.21 0.25

'Pools of at least 30 oocytes were collected after 0, 21, or 42 hours of IVM (HS/TN).

2Oocytes experienced either TN throughout the entire IVM or HS during the first half of IVM (HS/TN).
3The PDC localization plugin in the Image J processing program was used to calculate Pearson’s and Spearman’s correlation coefficient representing colocalization
of BCL2L1 with BAX or BECN1 in indivual oocytes. As per French et al. [48], a Pearson’s R of 0. 72 and Spearman'’s R of 0.63 is considered a high degree

of colocalization.
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Fig. 3 Colocalization of BAX and BCL2L1. Oocytes that underwent either TN/TN IVM or HS/TN IVM were fixed and used for IHC to determine

5x Magnification

colocalization. Neither the time point during IVM nor the temperature treatment affected colocalization of antibody-labeled BCL2L1 and BAX in
the oocyte. Based on level of fluorescence, there appeared to be a qualitative increase in BAX (red) at 21 h of IVM under HS compared to 21 h of
VM at TN conditions, though there appeared to be no effect on the abundance of BCL2L1 (green; A). The comparison between 21-h TN (B), 21-h

HS (C), or negative control (D) shows that there was punctate yellow signal representing colocalization in both TN and HS oocytes. For A, the
white bar in images in the left and middle columns represent 50 um, and the white bar in images in the right column represents 20 um. The
white arrows point to areas of colocalization. The images in the right column are magnified 5x images from the same oocyte from the middle column

and sequesters damaged organelles or misfolded pro-
teins, and proceeds to degrade its contents after inter-
action with a lysosome. BECN1 associates with PIK3C3
to increase nucleation of autophagosomes [19, 20], after
which the autophagosome membrane is extended via
two ubiquitin-like conjugation pathways including
ATG12 or LC3. ATG12 forms a complex with ATG5 via
an isopeptide bond, and this complex formation is
indicative of increased autophagosome formation [21].
The cleavage of LC3-I to form LC3-II is indicative of
autophagy occurrence, as cleavage of LC3-I and the
conjugation of phosphatidylethanolamine allows for
LC3-II to interact with the autophagosomal mem-
brane [24, 52].

Whereas HS during IVM did not affect the abundance
of BECN1 or BCL2L1 in MII oocytes, there was in-
creased abundance of ATG12 in complex with ATG5 in
MII oocytes after undergoing HS/TN IVM. This increase
of ATG12-ATG5 complex formation suggests a rise in
autophagosome formation [53], and this increase specif-
ically as a result of HS during the first half of IVM could
be due to HS being applied prior to transcriptional in-
activation associated with germinal vesicle breakdown
(GVBD). After GVBD, the oocyte is almost entirely tran-
scriptionally quiescent [54], but oocytes that underwent
the HS/TN temperature treatment during IVM experi-
enced HS before GVBD at a time when a transcriptional
response could have occurred.
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Fig. 4 Colocalization of BECN1 and BCL2L1. Oocytes that underwent either TN/TN VM or HS/TN IVM were fixed and used for IHC to determine
co-localization. Colocalization of BECN1 (green) and BCL2L1 (red) was low regardless of time point during IVM or temperature treatment. There
appeared to be more punctate intense spots of BECN1 staining in oocytes having undergone 21 h of IVM under HS compared to the oocytes
that underwent 21 h of IVM at TN conditions (A). The comparison between 21-h TN (B), 21-h HS (C), or negative control (D) shows that there was

middle column

punctate green signal representing BECN1 but no colocalization in both TN and HS oocytes. For A, the white bar in images in the left and
middle columns represent 50 um, and the white bar in images in the right column represents 20 um. The white arrows point to areas of
punctate BECN1 signal but no colocalization. The images in the right column are magnified 5x images from the same oocyte from the

We have previously characterized the blastocyst devel-
opment rate of MII oocytes collected after either TN/HS
or HS/TN IVM, used for in vitro fertilization (IVF). De-
creased blastocyst development rate was observed in fer-
tilized TN/HS oocytes compared to controls, yet
blastocyst development rate from fertilized HS/TN oo-
cytes did not differ from control treated oocytes [50].
Therefore, we used the HS/TN temperature treatment
for IVM to further characterize autophagy in oocytes
under HS conditions because this treatment decreases
maturation rate, but a subset of oocytes can reach MII
arrest and maintain the ability to produce blastocysts.

At 21h of IVM, there was decreased abundance of
LC3B-II in oocytes that had undergone HS compared to
oocytes that underwent IVM in TN conditions, suggesting
that HS exacerbates the decrease in LC3B-II. A decrease

in LC3B-II abundance during IVM could be interpreted as
an increase in autophagosome utilization, since at least in
some cell types, LC3B-II is degraded when autophago-
somes interact with the lysosome [25]. This inverse
relationship between decreased LC3B-II abundance and
increased ATG12-ATG5 complex formation could be
explained by the fact that the ATG12-ATG5 complex
detaches from the autophagosomal membrane after
autophagosome formation is complete [55].

Autophagy and apoptosis are regulated in tight coord-
ination, partly through BCL-2 family member proteins,
which are important regulators of apoptosis during
mammalian ovary development [26—30]. The dual role
of BCL-2 family members to regulate both autophagy
and apoptosis is mediated by the ability of BCL-2 and
BCL2L1 to prevent apoptosis by inhibiting the formation
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Fig. 5 Low Concentration of Rapamycin Increases Maturation Rate. Oocytes underwent IVM with the HS/TN temperature treatment in the
presence of vehicle control, 100 nM, 10 nM, or 1 nM rapamycin. The inclusion of 100 nM or 10 nM rapamycin in the IVM media had no effect on
maturation rate after HS/TN IVM compared to vehicle control, though oocytes matured in the presence of 1 nM rapamycin had increased

of mitochondrial pores that release cytochrome C [31],
or BCL-2 and BCL2L1 can interact with BECN1 to in-
hibit autophagy [32, 33].

We have previously detected an increase in BCL2L1
protein abundance in the pig ovary due to HS, and im-
munostaining of sectioned ovarian tissue detected in-
creased BCL2L1 localization in prophase I-arrested
oocytes and primary follicles of ovaries from post-
pubertal gilts subjected to HS [43]. In this study the
abundance of BCL2L1 in MII arrested oocytes after IVM
was not affected by HS, suggesting increased BCL2L1
abundance in the oocyte is dependent on other bio-
logical contributors. The mechanisms regulated by
BCL2L1 in an oocyte during maturation is potentially
still affected by HS, as BCL2L1 regulates autophagy or
apoptosis through protein-protein interactions [31, 32].
We therefore characterized colocalization of BCL2L1
with either BAX or BECN1 to determine if HS can affect
BCL2L1 protein interactions.

Colocalization of BCL2L1 with BAX remained con-
stant in oocytes regardless of time point of IVM or
temperature treatment, although, based on relative fluor-
escence signal, there did appear to be a higher abun-
dance of BAX in oocytes collected after 21h of HS
compared to TN oocytes. There was little to no colocali-
zation of BECN1 with BCL2L1 in oocytes regardless of
time point of IVM or temperature treatment, though HS
appeared to induce more BECN1 protein. Based on the
high degree of colocalization between BCL2L1 and BAX,
as well as the fact this protein-protein interaction is well
characterized in somatic cells [56], BCL2L1 may be inhi-
biting the release of cytochrome C in oocytes during

IVM regardless of TN or HS conditions. The distinct
lack of colocalization between BCL2L1 and BECNT1 indi-
cates that BCL2L1 is not inhibiting autophagy under the
IVM conditions used in this study. This finding, coupled
with the fact that HS affects abundance of autophagy-
related proteins, suggests that HS is inducing autophagy
in oocytes during maturation.

If autophagy has protective effects in terms of develop-
mental competence on the oocyte, then artificially activat-
ing autophagy in oocytes undergoing HS should have a
positive effect on meiotic maturation rate. Rapamycin in-
duces autophagy in yeast [57] and mammalian cells [58],
via the inhibition of mechanistic target of rapamycin
(mTOR; formerly mammalian target of rapamycin) com-
plex 1 (mTOC1). It is well characterized that mTOR is a
central regulator of cellular metabolism and cell fate [59].
The mechanism of rapamycin inhibition of mTORC1 in-
volves rapamycin forming a complex with FK506-binding
protein (FKBP12), which binds directly to mTORC1 [60,
61]. While this mechanism is not completely understood,
modeling of the rapamycin-FKBP12 complex bound to
mTOR suggests rapamycin displaces the alignment of
some mTORCI substrates to the catalytic cleft [59, 62].

Autophagosome-like structures have been previously de-
tected in oocytes and granulosa cells [42, 63, 64], and rapa-
mycin inclusion in IVM media has beneficial effects in pig
[65, 66] and bovine [67] oocytes. In this experiment, oocytes
underwent IVM subjected to HS in the presence of rapamy-
cin in the maturation media. The maturation rate of the oo-
cytes in 10 or 100nM rapamycin was not different from
oocytes that matured in the presence of vehicle control, how-
ever, the maturation rate of oocytes in 1 nM rapamycin was
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increased compared to control. These results are similar to
other experiments that characterize pig oocytes undergoing
IVM in normal conditions in the presence of rapamycin
[65]. Since mTOR is a major regulator of nutrient sensing
and cell fate decision [59], there could be a threshold that ex-
ists where the negative effects of inhibition of mTORC1 out-
weigh the beneficial effects of autophagy induction. This
threshold might explain why a low concentration of rapamy-
cin increased the percentage of oocytes able to undergo IVM
while higher concentrations did not. There could also be a
threshold at which excessive induction of autophagy is detri-
mental to the oocyte, as autophagy and apoptosis regulation
are tightly linked [56].

Embryonic development is dependent on oocyte com-
petence, which is determined by the cytoplasmic con-
tents of the oocyte [68, 69]. HS is associated with
reduced oocyte developmental competence and embry-
onic development [7-9], and autophagy is a potential
mechanism that the oocyte could utilize during HS to
recycle damaged cellular components. Herein we dem-
onstrate that HS affected autophagy-related proteins in
maturing oocytes, and that pharmacological induction of
autophagy increased oocyte maturation during HS.

Conclusions

The results presented here suggest that HS increases au-
tophagy induction in pig oocytes during IVM, and that
artificial induction of autophagy, using 1 nM rapamycin,
increases the maturation rate of oocytes during IVM.
These data add to the understanding of the components
of oocyte viability, which is necessary for improving the
efficiency of assisted reproductive techniques and devel-
oping environmental stress mitigation strategies to im-
prove reproduction [70, 71].
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