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Abstract

Background: The mechanism of recurrent implantation failure (RIF) is unclear at present and poor endometrial
receptivity may be one of the leading reasons. This study aims to construct a competing endogenous RNA (ceRNA)
network and identify potential hub genes underlying the development of RIF.

Methods: Weighted gene co-expression network analysis was performed based on differentially expressed mRNAs
(DEMs) and lncRNAs (DELs) from the GSE111974 dataset. Functional enrichment analyses of gene modules were
conducted using Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway. A lncRNA-
miRNA-mRNA ceRNA regulatory network was constructed according to predictive interaction derived from the
LncRNADisease, miRTarBase, miRDB and TargetScan databases. Topological analysis determined the key genes with
the highest centroid and their expressions were further verified using public datasets and quantitative real-time
polymerase chain reaction.

Results: A total of 1500 DEMs and 3 DELs were significantly up-regulated, whereas 1022 DEMs and 4 DELs were
significantly down-regulated in the RIF group compared with the control group. Six functional co-expression
modules were enriched in various biological processes, such as cell adhesion, regulation of cell motility and cellular
response to vascular endothelial growth factor stimulus. Five hub genes were identified in the ceRNA network, of
which GJA1 was down-regulated whereas TET2, MAP2K6, LRRC1 and TRPM6 were up-regulated in RIF endometrium.

Conclusions: We constructed a lncRNA-associated ceRNA network and identified five novel hub genes in RIF. This
finding could be helpful to understand the molecular mechanism for RIF pathogenesis, and may provide novel
insights for its early diagnosis and treatment.

Keywords: Recurrent implantation failure, Long non-coding RNA, Competing endogenous RNA, Weighted gene co-
expression network analysis
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Background
Successful implantation is a process which requires a
synchronized and coordinated interaction between the
embryo and the endometrium [1]. Over the past de-
cades, in vitro fertilization-embryo transfer (IVF-ET) has
become an effective approach for infertility treatment
with the improvements in ovarian stimulation and la-
boratory procedures [2]. Nevertheless, for each IVF-ET
cycle, the rates of implantation and livebirth still remain
modest at best [3]. In addition, a significant proportion
of couples would experience recurrent implantation fail-
ure (RIF), leading to great financial and psychological
burden in these patients [4].
The definition of RIF is varied and no consensus has

been reached yet [5]. According to the latest criteria pro-
posed by Coughlan et al. [6], RIF refers to the failure to
achieve clinical pregnancy after transfer of ≥ 4 morpho-
logically good-quality embryos for ≥ 3 fresh or frozen-
thawed cycles in women less than 40 years old. Recent
evidences suggest that RIF may be mainly associated
with poor endometrial receptivity and several molecular
changes have been detected in women with RIF, such as
mucin 1, integrin β3, homeobox A10 and leukemia in-
hibitor factor [5, 7–10]. However, the precise etiology
and pathogenesis of RIF have not been fully revealed.
Further studies are still urgently needed to elucidate the
underlying mechanism, identify new prognostic bio-
markers and develop potential therapeutic targets.
With the advances in high-throughput sequencing

technology, it is now well-established that the regulation
of biological processes not only relies on protein-coding
messenger RNA (mRNA), but also on non-coding RNA
such as micro RNA (miRNA), circular RNA and long
non-coding RNA (lncRNA) [11]. LncRNA, located in the
cell nucleus and/or cytoplasm, is > 200 nucleotides in
transcript length [12]. By competing for and binding to
shared miRNAs, lncRNAs can regulate the expression of
other mRNAs, which is called competing endogenous
RNA (ceRNA) network [12]. At present, the ceRNA net-
work has been proven to be involved in the development
of various diseases, including cancer [13], gestational
diabetes [14], systemic lupus erythematosus [15] and
polycystic ovary syndrome [16]. Moreover, accumulating
studies show that specific mRNAs, miRNAs and
lncRNAs are differentially expressed in the secretory
endometrium of RIF women, indicating their involve-
ment in endometrial receptivity defects [17–21]. None-
theless, the regulatory mechanism of the lncRNA-
miRNA-mRNA ceRNA network in RIF is still poorly in-
vestigated and remains largely unclear so far [22, 23].
In the present study, we obtained RIF-related expres-

sion profiles of mRNAs and lncRNAs from the Gene Ex-
pression Omnibus (GEO) database. The co-expression
modules and ceRNA network were constructed

following integrated bioinformatic analyses, with novel
hub genes identified and validated as potential targets
for the pathogenesis of RIF.

Methods
Data collection and pre-processing
Series matrix files of three datasets (GSE111974,
GSE71835 and GSE103465) were downloaded from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/). The
platforms were based on GPL17077 (Agilent-039494 Sure-
Print G3 Human GE v2 8 × 60 K Microarray 039381),
GPL10558 (Illumina HumanHT-12 V4.0 expression bead
chip) and GPL15207 (GeneChip® PrimeView™ Human
Gene Expression Array), respectively. All data were proc-
essed by the R software (version 3.4.0; https://www.r-
project.org/) and normalized by Robust Multichip Average
(RMA) algorithms. GSE111974 was used to screen the key
genes related to RIF [24], whereas GSE71835 and
GSE103465 were utilized for verification [25, 26].

Identification of differentially expressed mRNAs (DEMs)
and lncRNAs (DELs)
The limma package was used for identifying DEMs and
DELs between the RIF samples and matched normal
samples in GSE111974 [27]. An adjusted P < 0.05 and an
absolute log2 fold change (|log2FC|) > 1 were considered
statistically significant. According to the similarity of
lncRNAs and mRNAs expression level, two-way hier-
archical clustering and heatmap illustration were per-
formed by the heatmap package in R software to classify
samples into different groups and reveal the relationship
between different samples.

Construction of co-expression network
Gene co-expression networks were constructed based on
DEMs and DELs using the weighted gene co-expression
network analysis (WGCNA) package in R software [28].
Firstly, the outliers in the samples with limited expres-
sion information were checked and removed. Subse-
quently, the power of β-value was introduced to
transform the similarity matrix into an adjacency matrix.
For the best scale-free fit index and average connectivity,
the soft thresholding value (β) was determined to be 14
in the present study. On this basis, the topological over-
lap matrix (TOM) and the corresponding dissimilarity
values (1-TOM) were further calculated [29]. Ultimately,
genes with highly absolute correlations were clustered
into the same module to generate a cluster dendrogram
by The Dynamic Tree Cut method. The minimum num-
ber of genes per module was pre-set to be 10.

Functional enrichment analysis
To further analyze the potential biological processes, cel-
lular components, molecular functions and pathways of
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the gene modules, the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
were performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/) [30]. GO terms and KEGG pathways
were classified as enriched when P < 0.05.

Construction of ceRNA network
To construct the ceRNA network, we obtained the predictive
interaction of DELs in the WGCNA modules with miRNAs
from the LncRNADisease database (http://www.rnanut.net/
lncrnadisease/) [31]. Meanwhile, the interaction between
DEMs and miRNAs were downloaded and validated using
the following three databases: miRTarBase (http://
miRTarBase.cuhk.edu.cn/) [32], miRDB (http://www.mirdb.
org/) [33] and TargetScan (http://www.targetscan.org/) [34].
A lncRNA-miRNA‐mRNA ceRNA network was constructed
and visualized based on lncRNA‐miRNA and miRNA‐
mRNA pairs using the Cytoscape software (version 3.7.0;
Cytoscape Consortium, USA).

Identification of hub genes
The mRNAs in the intersection of the WGCNA network
and the ceRNA network were considered to play key
roles. These mRNAs were re-mapped into the WGCNA
network and we then assessed the topological property
of each node in the interaction network by calculating
three parameters: degree centrality (DC), betweenness
centrality (BC) and closeness centrality (CC). Generally,
a larger quantitative value indicates a greater significance
of the node in the network. The MATLAB Z-score func-
tion was used to standardize these parameters and the
formula was as follows: Z-score = (x–mean(x))/std(x),
where x was the value of the topological parameter,
mean (x) denoted the mean value and std (x) repre-
sented the standard deviation [35]. After summing the
DC, BC and CC Z-scores of each node, we selected the
top 5 genes as the hub genes in the network.

Validation of hub lncRNAs and genes
To verify the differential expression of hub lncRNAs and
genes in RIF patients, expression data were further ex-
tracted from the GSE71835 and GSE103465 datasets.
The Wilcoxon test was performed for between-group
comparison. The level of statistical significance was set
at P < 0.05 on two-sided test.

Sample collection
Endometrial tissues were obtained from patients who
underwent IVF-ET treatment at the Reproductive Med-
ical Center, the First Affiliated Hospital of Wenzhou
Medical University. Specifically, pipe suction curettage
(Runting, Soochow, China) was used to collect mid-
secretory endometrium in 7 days after ovulation during

natural menstrual cycles. The RIF group consisted of 10
women that failed to conceive after 3 or more transfer
cycles with at least 4 morphologically high-grade em-
bryos [6]. The control group included another 10
women that achieved clinical pregnancy in their first or
second embryo transfer. All women were less than 40
years old, exhibited regular ovulation and normal body
mass index, and had no hormonal therapy in the last 3
months. Exclusion criteria were as follows: congenital
uterine malformations, uterine fibroids, endometrial
polyps or hyperplasia, intrauterine adhesions, endometri-
tis, endometriosis, adenomyosis, hydrosalpinx, polycystic
ovary syndrome, hyperprolactinemia, thyroid dysfunc-
tion, thrombotic disorders, immune-related diseases, in-
fectious diseases and abnormal parental karyotypes. All
participants provided written informed consents and
ethical approval was obtained from the Institutional Re-
view Board of the First Affiliated Hospital of Wenzhou
Medical University (No. 2019-07).

RNA extraction and quantitative real-time polymerase
chain reaction (qRT-PCR)
Total RNA was extracted from endometrial samples by
TRIzol™ Reagent (Invitrogen, Carlsbad, USA) and
reverse-transcribed into cDNA using PrimeScript™ RT
Master Mix (TaKaRa, Dalian, China). The qRT-PCR was
conducted in triplicates using TB Green™ Premix Ex
Taq™ II (TaKaRa, Dalian, China) on the QuantStudio™ 6
Flex Real-Time PCR System (Applied Biosystems, Foster
City, USA). Relative mRNA expression was analyzed by
the 2−△△Ct method and normalized to β-actin as the en-
dogenous reference gene. The primer sequences of tar-
geted genes are presented in Table S1.

Statistical analysis
Quantitative variables were presented as mean ± stand-
ard deviation. After assessment of normality by the
Shapiro-Wilk test, comparisons between the control and
RIF groups were performed using the Student’s t test
(for parametric data) or Mann-Whitney U test (for non-
parametric data). For qualitative variables, data were de-
scribed as number with proportion, and compared by χ2

test or Fisher’s exact test as appropriate. Differences
were considered to be statistically significant for P <
0.05. All statistical analyses were conducted in SPSS 26.0
software (IBM Corp., Armonk, USA).

Results
Data acquisition
From the GSE111974 dataset, we downloaded expression
profiles in the endometrial tissue samples of 24 patients
with RIF and 24 normal women of childbearing age by
RNA-sequencing. A total of 17,596 genes were obtained
for analysis, including 17,154 mRNAs and 442 lncRNAs.
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In addition, the GSE71835 dataset included expression
profiles of 6 RIF and 6 normal women, and the
GSE103465 dataset had 3 samples in each respective
group.

Identification of DEMs and DELs
A total of 2522 DEMs and 7 DELs were identified from
the GSE111974 dataset. Among them, 1500 DEMs and 3
DELs were significantly up-regulated, whereas 1022
DEMs and 4 DELs were significantly down-regulated in
the RIF group compared with those in the normal group.
The corresponding volcano plot and clustering heatmaps
are shown in Fig. 1.

Construction of co-expression network
We identified seven co-expression modules using
WGCNA, which revealed the molecular gene regulatory
networks based on pairwise correlations between the dif-
ferentially expressed RIF RNAs (Fig. 2). The RNAs that
might function together were considered as one module

and assigned with one color. The gray represented all
genes that could not be incorporated into any module.
As the remaining module network presented, the blue
module included 63 mRNAs and 2 lncRNAs; the green
module included 31 mRNAs; the brown module in-
cluded 66 mRNAs and 1 lncRNA; the red module in-
cluded 10 mRNAs and 3 lncRNAs; the yellow module
included 44 mRNAs; and the turquoise module included
203 mRNAs and 1 lncRNA (Fig. 3).

Functional enrichment analysis
To explore the functional roles of these different mod-
ules, the GO and KEGG analyses were further per-
formed. The results showed that various biological
processes may be involved in the pathogenesis of RIF,
such as cell adhesion, regulation of cell motility, regula-
tion of cell proliferation, activation of mitogen-activated
protein kinase (MAPK) activity and cellular response to
vascular endothelial growth factor (VEGF) stimulus

Fig. 1 Identification of DEMs and DELs based on GSE111974 dataset. A Volcano plot of differentially expressed genes in endometria of RIF and
control groups. The red dots represent significantly upregulated genes, and the green dots represent significantly downregulated genes.
Hierarchical clustering heatmaps of (B) DELs and (C) DEMs in endometria of RIF and control groups. The color from green to red shows a trend
from low expression to high expression. DEMs, differentially expressed mRNAs; DELs, differentially expressed lncRNAs; RIF, recurrent
implantation failure
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Fig. 2 Weighted gene co-expression network analysis based on GSE111974 dataset. A Sample clustering to detect outliers. B Scale-free topology
model fit (left) and mean connectivity (right) for determining the optimal soft threshold value. C Cluster dendrogram of genes. Each branch
represents one gene and seven modules are displayed in different colors
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(Fig. 4). The number of genes in the red module was too
small to get functional enrichment results.

Construction of ceRNA network
Based on the WGCNA co-expression modules, the inter-
actions between lncRNAs/mRNAs and miRNAs were
further predicted and a lncRNA-miRNA-mRNA ceRNA
network was constructed (Fig. 5). Seven lncRNAs with
the highest degree were selected as hub lncRNAs, in-
cluding C1orf229, H19, PART1, SCARNA9, SNHG11,
LINC00173 and MIR17HG (Fig. 6). The predicted
lncRNA-miRNA and mRNA-miRNA pairs for WGCNA
modules and hub lncRNA-related ceRNA networks are
detailed in Tables S2 and S3, respectively.

Validation of hub lncRNAs
Figure S1 presents specifically the expression patterns of
seven hub lncRNAs, which were further validated in an-
other public dataset GSE71835. Consistently, the expres-
sion levels of PART1 and MIR17HG were significantly
increased in RIF endometrium (Figure S2C and G), while
those of H19 and LINC00173 were significantly de-
creased (Figure S2B and F). C1orf229, SCARNA9 and
SNHG11 were also differentially expressed between RIF
patients and controls, but the changes were not statisti-
cally significant (P > 0.05) (Figure S2A, D and E).

Identification and validation of hub genes
To identify the RIF-related hub genes, we re-mapped the
significantly DEMs in the ceRNA network to the
WGCNA co-expression network. The final network

consisted 23 nodes and 51 edges (Fig. 7). After sorting
by the sum of Z-scores, a total of five genes were identi-
fied as hub genes, including TET2, GJA1, MAP2K6,
LRRC1 and TRPM6. The details are presented in Table
S4.
According to the expression profile analysis of the

GSE111974 dataset, TET2, MAP2K6, LRRC1 and
TRPM6 showed significantly higher expression while
GJA1 showed significantly lower expression in the RIF
group compared with the control group (P < 0.05)
(Fig. 8). Consistently, in the GSE71835 dataset, the ex-
pression of LRRC1, MAP2K6 and TRPM6 were also sig-
nificantly higher in the endometrium of RIF patients
(P < 0.05) (Fig. 9B, C and E), while data on GJA1 and
TET2 could not be obtained. On the other hand, we
found a trend for higher TET2 and lower GJA1 expres-
sion in the RIF group in the GSE103465 dataset, al-
though no statistical differences were reached possibly
due to the small sample size (both P = 0.1) (Fig. 9A and
D). In general, the expression analyses of five hub genes
in the external validation datasets were accordant with
the results from the discovery dataset.
The identified candidate genes were further assayed by

qRT-PCR on a sample set of 10 RIF patients and 10 con-
trols. Except for the number of embryo transfers (P <
0.001), other demographic characteristics were compar-
able between the two groups (all P > 0.05) (Table S5). As
shown in Fig. 10, the mRNA expressions of GJA1,
MAP2K6, LRRC1 and TRPM6 displayed the same trend
as our in silico results, while no significant difference
was detected in TET2.

Fig. 3 Co-expression networks of the six modules. A The blue module. B The brown module. C The green module. D The red module. E The turquoise module.
F The yellow module. The round nodes represent mRNAs, the triangle nodes represent lncRNAs, and the edges between nodes indicate co-expressions
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Discussion
As a complicated and poorly understood clinical dis-
order in IVF-ET cycles, RIF has brought significant bur-
den to patients and therapeutic challenges to physicians.
In this study, we applied an integrated bioinformatic ap-
proach to establish the RIF-related co-expression net-
work and ceRNA network. In addition, five novel hub
genes were identified and further validated as potential
molecular targets underlying the development of RIF.

Six functional modules associated with RIF were built
by WGCNA and analyzed in depth. In general, the GO
and KEGG analyses showed that enriched genes and
pathways were mainly involved in basic and essential
biological events, such as cell adhesion, regulation of cell
motility and regulation of cell proliferation, which were
consistent with previous researches [17–21]. Indeed, in
preparation for embryo implantation, the endometrial
luminal epithelium must convert to an adhesive state for

Fig. 4 GO and KEGG enrichment analyses of the five modules. A The blue module. B The brown module. C The turquoise module. D The yellow
module. E The green module. The X-axis represents enriched terms, the left Y-axis represents the number of enriched genes, and the right Y-axis
represents the P-value. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF,
molecular function
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subsequent invasion of the hatched blastocyst [36].
Penetration of the trophoblasts also triggers a series of
endometrial response called decidualization, which in-
volves massive proliferation and differentiation of the
stromal cells [37]. Moreover, activation of MAPK activity
was found to be enriched in the turquoise module,
which has been demonstrated to promote the prolifera-
tion of endometrial cells, the enhancement of uterine
capacity and the maintenance of pregnancy [38, 39]. As
one of the most important angiogenic factors, VEGF
plays a vital role in decidual vascularization and placenta
angiogenesis. Prior studies also suggest that VEGF poly-
morphisms are closely associated with the development
of RIF [40, 41]. Accordingly, we found a significant en-
richment of cellular response to VEGF stimulus in the
brown module.
In the present study, seven hub lncRNAs with the high-

est degree were identified and verified in the ceRNA net-
work, including C1orf229, H19, PART1, SCARNA9,
SNHG11, LINC00173 and MIR17HG. Among them, the
lncRNA H19, which is mainly located in the cytoplasm
with a length of approximately 2.3 kb, plays diverse roles

in multiple physiological and pathological processes [11,
12]. In human endometrium, H19 is confined to the endo-
metrial stroma and expressed in a menstrual cycle-
dependent manner, with peaks reached during the late
proliferative stage [42]. Previous studies have shown that
the expression of H19 was significantly decreased in
women with unexplained infertility [43], spontaneous
abortion [44], endometriosis [45] as well as RIF [46]. Act-
ing as a molecular sponge, H19 downregulation could in-
crease the activity of miRNA let-7 and thus inhibit its
downstream target ITGB3 at the post‐transcriptional level,
which further contributes to impaired adhesion and inva-
siveness of extravillous trophoblast [47]. In addition, aber-
ration of the H19/let‐7/IGF1R regulatory pathway has
been associated with a negative impact on stromal cell
proliferation and may thus decrease endometrial receptiv-
ity for pregnancy [45]. Overexpression of PART1,
SNHG11, LINC00173 and MIR17HG is widely involved
in tumorigenesis and malignant progression of several
types of cancer, such as glioma, breast cancer, lung cancer
and colorectal cancer [48–52]. Potential mechanisms have
been focused on the promotion of cell proliferation,

Fig. 5 Construction of the competing endogenous RNA network. The red nodes represent lncRNAs, the green nodes represent miRNAs, and the
blue nodes represent mRNAs. Only the nodes in the top 200 of degree ranking are presented
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migration, invasion and epithelial-mesenchymal transition,
which are also important for the establishment of recep-
tive endometria and the process of embryo implantation
[36, 37]. Therefore, these lncRNAs may regulate the devel-
opment of RIF as well, although no relevant findings have
been reported for confirmation thus far. With regard to
molecular mechanisms of C1orf229 and SCARNA9, the
scarce studies at present require the need for further
investigations.
Co-analysis of the WGCNA network and the lncRNA-

related ceRNA network identified five novel hub genes
in RIF, namely TET2, GJA1, MAP2K6, LRRC1 and
TRPM6. The differential expression was also in general
consistency among the discovery dataset GSE111974,
the validation datasets GSE71835/GSE103465 and qRT-
PCR analysis using in vivo samples. Dysregulation of

TET2 is commonly observed in myeloid and lymphoid
malignancies [53]. As one of the three proteins in the
TET (ten-eleven translocation) family, TET2 is an α-
ketoglutarate-dependent dioxygenase that enables the
conversion of 5-methyl-cytosine to 5-hydroxymethyl-
cytosine and promotes DNA demethylation [54]. In this
regard, the increased TET2 in RIF might be associated
with hypomethylation of CYP19A1, ESR2 and SF-1
genes, thus leading to an estradiol-rich endometrial en-
vironment and defective decidualization [55–57]. Con-
nexin 43 (Cx43), the product of GJA1 gene, is a
constitutive part of gap junction intercellular communi-
cation and predominantly expressed in endometrial
stroma [58]. Ablation of Cx43 expression has been re-
ported to suppress proliferation, impair differentiation
and induce apoptosis of endometrial stromal cells [58,

Fig. 6 Competing endogenous RNA networks of seven hub lncRNAs. A C1orf229. B H19. C PART1. D SCARNA9. E SNHG11. F LINC00173. G MIR17HG.
Nodes with different colors and shapes represent different RNA types
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59]. The production of key angiogenic factors (e.g.,
VEGF) was also significantly reduced, whereas the secre-
tion of inflammatory mediators was increased [60].
Collectively, there disruptions could result in an unre-
ceptive endometrium with embryo growth arrest and
early pregnancy loss [58]. MAP2K6 is an upstream kin-
ase of the p38 MAPK signal cascade activated under the
status of inflammation and stress. Previous studies have
demonstrated that MAP2K6 plays crucial roles in vari-
ous biological processes, such as cell cycle regulation,
transcription and apoptosis [61]. In Ishikawa endomet-
rial cell lines, transfection of MAP2K6 could stimulate
the estrogen-mediated transcription and proliferation
through selective activation of p38 MAPK, which further
phosphorylates and potentiates the p160 coactivator
glucocorticoid receptor-interacting protein 1 [62].
Therefore, MAP2K6 upregulation in RIF may augment
estrogen action in the secretory endometrium and thus
impair the progesterone-dependent decidualization
process. LRRC1 belongs to the LAP protein family and
is vital for the establishment and maintenance of apical-
basal cell polarity. Throughout the proliferative phase of
the menstrual cycle, human endometrial luminal epithe-
lium also displays a distinct polarized organization.
However, during the secretory phase, loss of polarity
must occur to overcome mutual repulsion and thus

facilitate the interaction with embryos for implantation
[63, 64]. In this regard, high LRRC1 expression may im-
pede cellular rearrangements for polarity modulation
and consequently lead to the development of RIF. As the
member of TRP (transient receptor potential) superfam-
ily, TRPM6 acts as an important ion channel for Ca2+/
Mg2+ influx that transduces environmental stimuli into
cellular responses [65]. In human endometrium, the ex-
pression of TRPM6 increases during the follicular phase,
peaks in the early luteal phase, but decreases sharply in
the late luteal phase when progesterone levels are high
[66, 67]. This specific downregulation around the win-
dow of implantation suggests that TRPM6 might be im-
portant to necessitate functional progesterone receptors
and confer endometrial receptivity. Contrarily, signifi-
cant upregulation of TRPM6 was found in women with
RIF, further implicating its possible role in mediating
decidualization and embryo implantation. Overall, these
hub genes provide novel insights into the pathogenesis
of RIF and deserve more exploration on the detailed
mechanisms.
Some limitations should be acknowledged of the

current study. On the one hand, the sample size of
our analyzed dataset was relatively small, with only 24
RIF patients and 24 control women enrolled. There-
fore, the results may not be robust enough and more

Fig. 7 Co-expression network of overlapped genes in WGCNA and ceRNA analyses. The blue nodes represent mRNAs and the edges between
nodes indicate co-expressions. WGCNA, weighted gene co-expression network analysis; ceRNA, competing endogenous RNA
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studies with larger sample size should be carried out
in the future. On the other hand, although the ex-
pression of hub genes was validated in endometrial
tissue samples from IVF-ET patients, we did not as-
sess further their biological functions predicted by
bioinformatic tools. In this regard, we have obtained
the hospital’s ethical approval for study and several
in vitro experiments are now undergoing for more
investigation.

Conclusions
In summary, our study provided a comprehensive bio-
informatic analysis of the WGCNA co-expression net-
work and lncRNA-associated ceRNA network for RIF.
We identified five novel hub genes that showed signifi-
cantly differential expression in RIF and may play crucial
roles in endometrial receptivity. Our findings could be
helpful to further understand the molecular mechanisms
for RIF pathogenesis, and also lay a foundation for the
discovery of potential diagnostic and therapeutic targets.

Fig. 8 Differential expression of five hub genes in GSE111974 dataset. A GJA1. B LRRC1. C MAP2K6. D TET2. E TRPM6. RIF, recurrent implantation failure
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Fig. 9 Differential expression of five hub genes in validation datasets GSE71835 and GSE103465. A GJA1. B LRRC1. C MAP2K6. D TET2. E TRPM6.
RIF, recurrent implantation failure

Fig. 10 Validation of hub genes in the endometrium of RIF patients and controls by qRT-PCR. RIF, recurrent implantation failure. ns, not significant.
* P < 0.05
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