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Abstract
We recently demonstrated that caspase-3 is important for apoptosis during spontaneous involution
of the corpus luteum (CL). These studies tested if prostaglandin F2α (PGF2α) or FAS regulated
luteal regression, utilize a caspase-3 dependent pathway to execute luteal cell apoptosis, and if the
two receptors work via independent or potentially shared intracellular signaling components/
pathways to activate caspase-3. Wild-type (WT) or caspase-3 deficient female mice, 25–26 days old,
were given 10 IU equine chorionic gonadotropin (eCG) intraperitoneally (IP) followed by 10 IU
human chorionic gonadotropin (hCG) IP 46 h later to synchronize ovulation. The animals were
then injected with IgG (2 micrograms, i.v.), the FAS-activating antibody Jo2 (2 micrograms, i.v.), or
PGF2α (10 micrograms, i.p.) at 24 or 48 h post-ovulation. Ovaries from each group were collected
8 h later for assessment of active caspase-3 enzyme and apoptosis (measured by the TUNEL assay)
in the CL. Regardless of genotype or treatment, CL in ovaries collected from mice injected 24 h
after ovulation showed no evidence of active caspase-3 or apoptosis. However, PGF2α or Jo2 at 48
h post-ovulation and collected 8 h later induced caspase-3 activation in 13.2 ± 1.8% and 13.7 ±  2.2
% of the cells, respectively and resulted in 16.35 ±  0.7% (PGF2α) and 14.3 ±  2.5% TUNEL-positive
cells when compared to 1.48 ± 0.8% of cells CL in IgG treated controls. In contrast, CL in ovaries
collected from caspase-3 deficient mice whether treated with PGF2α, Jo2, or control IgG at 48 h
post-ovulation showed little evidence of active caspase-3 or apoptosis. CL of WT mice treated with
Jo2 at 48 h post-ovulation had an 8-fold increase in the activity of caspase-8, an activator of caspase-
3 that is coupled to the FAS death receptor. Somewhat unexpectedly, however, treatment of WT
mice with PGF2α at 48 h post-ovulation resulted in a 22-fold increase in caspase-8 activity in the
CL, despite the fact that the receptor for PGF2α has not been shown to be directly coupled to
caspase-8 recruitment and activation. We hypothesize that PGF2α initiates luteolysis in vivo, at least
in part, by increasing the bioactivity or bioavailability of cytokines, such as FasL and that multiple
endocrine factors work in concert to activate caspase-3-driven apoptosis during luteolysis.
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Background
Prostaglandin F2α (PGF2α) has been implicated as a lute-
olysin in a number of mammalian species [1–3]. Howev-
er, the exact mechanism(s) by which PGF2α elicits its
response in the corpus luteum (CL) remains unclear. Re-
sults from previous studies have implicated so-called
death receptor-activating cytokines, such as tumor necro-
sis factor α (TNFα) and Fas ligand (FasL), as being impor-
tant mediators of PGF2α-initiated luteolysis [4–6].
Unfortunately, since the vast majority of evidence sup-
porting a role for cytokines in luteal regression has been
derived from in vitro studies of dispersed cells in culture
[5,7–14], it is currently unknown if PGF2α modulates
death receptor-coupled signaling pathways in the CL in
vivo.

At least 29 TNF receptor super family members have been
identified in the human [15] some of which have been
deemed death receptors either by their action or because
they contain the highly homologous amino acid sequence
corresponding to death domain (DD) [15,16]. The FAS/
FasL system was chosen for study herein because FAS is
recognized as a death receptor and indirect evidence sug-
gests that it plays a significant role in luteal regression. For
example, FAS immunostaining is observed in human
granulosa-lutein cells during the early luteal phase, and
progressively intensifies during the mid-luteal phase
through the late luteal phase [17]. This expression pattern
is also observed in the CL of mice [18] and rats [19,20]. In
keeping with the proposal that FAS plays a role in luteol-
ysis, in vitro studies have shown that FasL or FAS-activating
antibodies induce luteal cell death in the human [10],
mouse [5,18], rat [19,20] and cow [21]. Moreover, limited
in vivo work has demonstrated that intravenous or intra-
peritoneal administration of FAS-activating antibody
causes luteolysis in the mouse [18].

Additional support for a functional role of FAS in luteal
regression has been derived from experiments with ho-
mozygous lpr mice, which have non-functional or mini-
mally-functional FAS [22]. The CL of these mice undergo
regression, but at irregular intervals [18]. Similarly, ho-
mozygous gld mice, which lack expression of functional
FasL [22], have an irregular luteal phase similar to that ob-
served in lpr/lpr mice [18]. Unfortunately, no work was
done to characterize potential apoptosis defects in the CL
of these mutants, and thus the basis for the irregular cy-
clicity remains unknown. Collectively these results sug-
gest that FAS-mediated events are critical to timely
progression of the normal estrous cycle, and perhaps to
luteal regression, in the adult murine ovary.

Thus it is conceivable that some level of cross-talk occurs
between PGF2α-initiated events and death receptor func-
tion during the tissue involution process of the CL. Mech-

anistically, this would likely involve the activation of
caspases, a family of aspartic acid-specific cysteine proteas-
es that serve as both initiators (e.g., caspase-8) and execu-
tioners (e.g., caspase-3) of apoptosis in vertebrates [23].
Indeed, we have recently shown using a synchronized
ovulation mouse model that activation of caspase-3 is re-
quired for structural involution of the CL [24]. The
present study was designed to test the hypothesis that
PGF2α-induced luteal regression in vivo is mediated
through indirect mechanisms involving death receptor-
coupled caspase-8 activation followed by a caspase-3-de-
pendent pathway of apoptosis.

Materials and Methods
Animals
Wild-type (WT) and caspase-3-deficient female mice (con-
genic C57BL/6) were generated by mating heterozygous
male and female mice [25]. Female mice were genotyped
by PCR analysis of tail-snip genomic DNA using specific
primers [25]. Timed ovulation was induced in all experi-
ments at day 25–26 postpartum by intraperitoneal injec-
tion of mice with 10 IU of eCG; (Professional
Compounding Centers of America, Houston, TX) fol-
lowed by 10 IU hCG; (Serono Laboratories, Randolph,
MA) 46 h later [24]. This regime induces superovulation
at approximately 10 hours post hCG with development of
8 to 10 CL per ovary. Peak progesterone synthesis occurs
at approximately 30 hours post ovulation and levels fall
back to preovulatory levels by approximately 60 hours
(unpublished). All animal protocols were reviewed and
approved by the Massachusetts General Hospital Institu-
tional Animal Care and Use Committee, and were per-
formed in strict accordance with the NIH Guide for the
Care and Use of Laboratory Animals.

In vivo studies of luteal regression
In these experiments, gonadotropin-synchronized mice
(wild-type or caspase-3-null) were injected at 24 or 48 h
post-ovulation with IgG (2 µg/mouse, i.v.; a non-activat-
ing Anti-FAS antibody; Santa Cruz Biotechnology, Santa
Cruz, CA), the hamster monoclonal anti-mouse FAS-acti-
vating antibody Jo2 (2 µg/mouse, i.v.; PharMingen, San
Diego, CA) or PGF2α (10 µg/mouse, i.p.; Lutalyse, Phar-
macia-Upjohn Co., Kalamazoo, MI). Ovaries and blood
were then collected at 8 h post-injection (n = 3 mice per
genotype per treatment group). In some experiments, ova-
ries were fixed in 10% neutral-buffered formalin, paraffin-
embedded, serially sectioned (6 µm) and mounted in or-
der on glass microscope slides. Ovarian mid-sagittal sec-
tions were used for immunohistochemical analysis of
active caspase-3 (see below) or in situ analysis of DNA frag-
mentation by TUNEL (see below). In other experiments,
CL were homogenized and assessed for caspase-8 activity
(see below). Serum was separated from blood samples
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and stored at -80 C until analysis for progesterone concen-
trations (see below).

Immunohistochemistry
Paraffin-embedded sections were analyzed by immuno-
histochemistry for the presence of cleaved ("active") cas-
pase-3, as previously described [9,24,26,27] using a
1:3,000 dilution of a rabbit polyclonal antibody (CM1;
IDUN Pharmaceuticals Inc., La Jolla, CA) that preferen-
tially recognizes cleaved caspase-3 [9,24,26,27]. Sections
were counterstained with hematoxylin and analyzed by
light microscopy. Cells exhibiting red-brown cytoplasmic
staining from the colorimetric reaction were considered
positive for active caspase-3. Negative controls (reactions
lacking primary antibody) yielded no reaction product
(data not shown). Similarly, ovarian tissue samples from
caspase-3 deficient mice exhibited minimal or no immu-
nostaining (data not shown; see [24,26]), consistent with
the fact that CM1 recognizes principally caspase-3 in addi-
tion to low cross-reactivity with processed ("active") cas-
pase-7 [27]. Sections of ovaries from WT and caspase-3
deficient mice were always processed in parallel within
the same assay. For quantitative comparisons, the number
of caspase-3 positive cells was determined by counting
CM-1 reactive cells in 3 fields of view (X600) per CL in
three separate CL from each of 3 different mice per geno-
type per treatment group without knowledge of
treatment.

In addition, samples from the two groups were subjected
to immunohistochemical analysis of FAS protein as per
the manufacturer's instructions with slight modifications
as listed below. Paraffin sections were subjected to micro-
wave on high power for 10 minutes in sodium acetate,
pH6, for antigen retrieval. Sections were incubated with a
rabbit polyclonal FAS antibody (1:50; SC-1024; Santa
Cruz Biotechnology, Santa Cruz, CA). The secondary anti-
body, peroxidase conjugated goat anti-rabbit IgG was ap-
plied at a dilution of 1:200. The sections were then stained
with 3,3'-diaminobenzidine tetrahydrochloride (DAB) to
identify FAS positive cells. Controls included sections
treated in the same manner but incubated with normal
rabbit serum instead of primary antibody. All immuno-
histochemical staining for any given antibody was done
on all sections at the same time under the same
conditions.

Terminal deoxynucleotidyl transferase-mediated dUTP 
nick end-labeling (TUNEL)
The occurrence of apoptosis in luteal and ovarian sections
was assessed by monitoring the presence of DNA frag-
mentation in situ, as described previously [28]. Slides were
analyzed by light microscopy after light counterstaining
with hematoxylin. Cells exhibiting dark brown nuclear
staining from the colorimetric reaction were considered

positive for DNA fragmentation. Negative controls, lack-
ing the labeling enzyme, yielded no reaction product (da-
ta not shown). Sections of ovaries from WT and caspase-3
deficient mice were processed for TUNEL in parallel with-
in the same assay. The percent of apoptotic cells was deter-
mined by counting TUNEL-positive cells out of the total
number of cells per three fields of view (X600) in each of
three CL from each of 3 different mice per genotype per
treatment group.

Caspase-8 activity assay
Ovaries were removed 8 h post-treatment with IgG, Jo2, or
PGF2α and CL were dissected out using a dissecting micro-
scope. All CL from an individual animal were pooled and
homogenized in lysis buffer from the ApoAlert Caspase-8
Colorimetric Assay Kit (Clontech, Palo Alto, CA). The pro-
tein content was determined using the DC protein deter-
mination assay (BioRad, Hercules, CA). Samples were
diluted to 2 µg protein/ml with dilution buffer supplied in
the kit. Fifty µl of each diluted sample (100 ng protein/
sample) was then incubated with 200 µM IETD-pNA sub-
strate for 2 h at 37 C in the dark, and the reaction product
was determined by reading the absorbance at 405 nm.

Serum hormone analysis
Progesterone levels were measured in serum according to
the manufacturer's instructions using a direct solid phase
enzyme-immunoassay (DRG Progesterone ELISA kit; AL-
PCO, Windham, NH), as previously validated in our lab-
oratory [24].

Data Presentation and Statistical Analysis
Each experiment was independently replicated three
times with different mice in each experiment. Qualitative
data shown are representative of results obtained in the
replicate experiments. Quantitative data (mean ± SEM)
were analyzed by either Students t-test or one-way ANO-
VA followed by Duncan's New Multiple Range test when
differences were observed. A P value less than 0.05 was
considered statistically significant.

Results
Caspase-3 is required for apoptosis in CL following treat-
ment with Jo2 or PGF2α
There was no evidence of TUNEL-positive cells in the CL
of ovaries collected from WT or caspase-3-null mice fol-
lowing treatment at 24 h post-ovulation with IgG, FAS-ac-
tivating antibody (Jo2) or PGF2α (data not shown). The
percentage of TUNEL-positive cells in CL of ovaries col-
lected from WT mice following IgG injection at 48 h post-
ovulation was 1.48 ± 0.8% (Fig. 1A). By comparison, the
CL in ovaries collected from WT mice treated with Jo2
(Fig. 1C) or PGF2α (Fig. 1E) at 48 h post-ovulation exhib-
ited a 10-fold or greater increase in the percentage of
TUNEL-positive cells per field of view (Jo2: 14.3 ± 2.5%;
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Figure 1
Histochemical assessment of apoptosis in CL derived from WT and caspase-3-null mice following treatment with IgG, Jo2 or 
PGF2α, each administered at 48 h post-ovulation. The ovaries were harvested 8 h post-injection. The data shown depict the 
incidence of apoptotic (TUNEL-positive, brown staining) cells in CL of ovaries derived from WT (A, C, and E) and caspase-3 
deficient mice (B, D, and F) following injection with IgG (A, B), Jo2 (C, D) or PGF2α (E, F). Original magnifications, × 600. The 
insets represent a higher magnification (× 1000), demonstrating the presence or absence of TUNEL positive cells. The photom-
icrographs shown are representative of similar results obtained in at least three independent experiments.
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PGF2α: 16.35 ± 0.7%; P < 0.05 for both treatments versus
IgG controls). In striking contrast to the results with WT
mice, there was no significant increase in the percentage of
TUNEL-positive cells in CL derived from caspase-3 defi-
cient female mice treated at 48 h post-ovulation with Jo2
(Fig. 1D; 0.32 ± 0.17) or PGF2α (Fig. 1F; 0.22 ± 0.08)
when compared with IgG-treated controls (Fig. 1B; 0.06 ±
.003).

Jo2 or PGF2α increases active caspase-3 enzyme levels in 
CL of WT mice
There was no evidence of CM1-positive cells in the CL of
ovaries collected from WT or caspase-3 deficient mice fol-
lowing treatment at 24 h post-ovulation with IgG, FAS-ac-
tivating antibody (Jo2) or PGF2α (data not shown). The
percentage of CM1-positive cells per field of view in CL of
ovaries collected from WT mice following IgG injection at
48 h post-ovulation was low (1.3 ± 0.3%; Fig. 2A). By
comparison, the CL in ovaries collected from WT mice
treated with Jo2 (Fig. 2C) or PGF2α (Fig. 2E) at 48 h post-
ovulation exhibited a 10-fold or greater increase in the
percentage of CM1-positive cells per field of view (Jo2:
13.7 ± 2.2%; PGF2α: 13.2 ± 1.8%; P < 0.05 for both treat-
ments versus IgG controls). As anticipated, there was no
evidence of CM1-positive cells in CL derived from caspase-
3 deficient female mice treated at 48 h post-ovulation
with IgG (Fig. 2B), Jo2 (Fig. 2D) or PGF2α (Fig. 2F).

Immunohistochemical detection of FAS in WT and cas-
pase-3 deficient mice
To rule out the possibility that the lack of effect of either
Jo2 or PGF2α injected at 24 h post-ovulation was due to
the lack of FAS expression in the CL of either WT or cas-
pase-3 deficient mice, ovarian sections from both groups
were subjected to immunohistochemical analysis of FAS
protein. FAS was evident in luteal tissue of ovaries collect-
ed from both WT (Fig. 3B) and caspase-3-null (Fig. 3C)
mice at 24 h post-ovulation.

Serum levels of progesterone in caspase-3 deficient versus 
WT mice
There was no significant difference in the levels of proges-
terone in WT mice at 8 hours following injection with IgG
(4.14 ± 1.09 ng/ml), Jo2 (4.90 ± 2.26 ng/ml), or PGF2α
(4.66 ± 1.08 ng/ml) at 24 hours. In addition, no signifi-
cant difference (P > 0.05) in the levels of progesterone was
observed in WT versus caspase-3-null (ko) mice at 8 h after
injection with IgG 2.76 ± 1.26, Jo2 (wt, 1.25 ± 0.34; ko
1.49 ± 0.63) or PGF2α (wt, 2.7 ± 0.8; ko, 3.7 ± 0.31) at the
48 h post-ovulation time-points.

Caspase-8 activity
In a final set of experiments, the level of caspase-8 activity
was determined in CL isolated from ovaries collected
from WT mice 8 h following injection with IgG, Jo2 or

PGF2α, at 48 h post-ovulation. Treatment with Jo2 result-
ed in an 8-fold increase (P < 0.04) in caspase-8 activity over
the IgG treated controls (Fig. 4). In addition, CL of PGF2α-
treated mice had a 22-fold increase (P < 0.0003) in cas-
pase-8 activity over controls (Fig. 4).

Discussion
Prostaglandin F2α has long been proposed to disrupt pro-
gesterone synthesis, decrease blood flow, increase stress-
related signaling, and induce cell death in the CL [2,3].
However, that PGF2α serves as a sole direct regulator of all
aspects of luteal regression remains debatable, due in
large part to discordant data resulting from species-specif-
ic differences in the control of CL function or from studies
using in vivo versus in vitro approaches. For example, ad-
ministration of PGF2α in vivo results in a decline in serum
progesterone concentrations and an induction of luteal
cell apoptosis in a number of species [29–33]. In contrast,
treatment with PGF2α in vitro decreases gonadotropin-
stimulated progesterone production in cultured rat, ovine,
bovine [34–36] and human [37–40] luteal cells, but does
not effect cell numbers or viability [35,41]. The loss of
pro-apoptotic effects of PGF2α following ex vivo removal
and chemical dispersal of the CL suggest that either other
endocrine factors or cell-to-cell contact is required for
PGF2α to kill luteal cells. While interaction between en-
dothelial cells and steroidogenic luteal cells is probably
important, recent data support the former possibility as
well in that key roles for death receptor ligands, such as
FasL and TNFα, in PGF2α-initiated luteolysis have been
proposed [5,7,18–20,42]. Careful consideration should
also be given to the role of PGF2α as a luteolytic agent in
the mouse. Although it is arguably a primary luteolysin in
a number of species and may serve as a secondary lute-
olysin in the rat, its role as a primary or secondary luteo-
lytic agent in the mouse is uncertain. The PGF2α receptor
mutant mouse appears to have a normal length estrous cy-
cle, however luteal regression fails to occur during preg-
nancy [43]. It is not readily clear if the functional and
structural components differ in the PGF2α receptor mu-
tant as are described in the caspase-3 mutant mice. Of
course it is also possible that there are redundant mecha-
nisms which may serve to propagate the luteolytic signal
during the estrous cycle in the absence of a PGF2α recep-
tor.

To more easily study the events underlying the functional
and structural components of luteal regression, which are
temporally distinct, we have utilized the gonadotropin-
synchronized luteal phase mouse model. In this model,
we have found that circulating levels of progesterone peak
at 30 h post-ovulation and precipitously decline to pre-
luteal phase levels by 60 h after ovulation [24]. Structural
involution of the CL occurs via caspase-3-mediated apop-
tosis around 48 h post-ovulation, as evidenced by a dra-
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Figure 2
Detection of active caspase-3 in CL derived from WT and caspase-3-deficient mice following treatment with IgG, Jo2 or PGF2α. 
The presence of active caspase-3 was evaluated by immunohistochemistry using CM-1 antibody in sections of CL derived from 
WT or caspase-3-deficient mice 8 h following injection at 48 h post ovulation with IgG (A and B), Jo2 (C and D) or PGF2α (E 
and F). Original magnification: × 600. The insets represent a high magnification (original magnification × 1000) demonstrating 
the presence or absence of CM-1 positive cells (dark brown reaction). Medial sections were obtained from CL from three 
independent mice for analysis. Photomicrographs shown are representative of identical results in at least three separate 
experiments.
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Figure 3
Histochemical assessment of FAS in CL derived from WT and caspase-3-deficient mice following treatment with IgG, Jo2 or 
PGF2α. administered 24 h post ovulation and ovaries harvested 8 h post injection. Panel represents a photomicrograph of a CL 
section derived from WT mouse used as a negative control (no primary antibody). Panel B and C are photomicrographs of CL 
sections derived from WT and caspase-3-deficient mice (respectively) probed with anti-FAS antibody. Original magnification 
for panels A, B and C × 600.
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matic increase in TUNEL positive cells concomitant with
the rapid decline in progesterone secretion [24]. The re-
quirement for caspase-3, determined by the use of gene
knockout mice, is consistent with reports that this execu-
tioner of apoptosis is expressed in the CL of many species,
including the human, bovine, rat and mouse [24,44–46].
Moreover, caspase-3-like activity is up-regulated during
luteal regression or luteal cell death [9,44,47]. Interesting-
ly, however, whereas the levels of serum progesterone de-
cline in caspase-3-null mice similar to their wild-type
siblings during luteolysis, structural involution of the CL
is suspended for at least 4 d in the mutant animals [24].
This study provided strong evidence for caspase-3 being
paramount to structural involution but not loss of func-
tion (decreased progesterone) of the CL.

Using this ovulation-synchronized mouse model, in the
present study we found that administration of PGF2α to
WT female mice or their mutant siblings (caspase-3 defi-
cient) at 24 or 48 h post-ovulation had no effect on pro-
gesterone levels versus controls. However, administration
of PGF2α at 48 h post-ovulation resulted in a dramatic ac-
celeration in the onset of apoptosis when compared to CL
in untreated controls. This effect was mirrored by a pro-
portional increase in the incidence of CM1 (active caspase-
3)-positive cells in the CL, consistent with the hypothesis
that this enzyme is important for cell death during struc-
tural involution of the CL [24]. These findings were ex-

tended by demonstrating that the CL from caspase-3
deficient mice were resistant to apoptosis induced by
PGF2α exposure in vivo when compared to CL of WT type
siblings treated in parallel. These data unequivocally dem-
onstrate that caspase-3 is a required mediator of PGF2α-in-
duced luteolysis.

Of interest, comparable results were obtained following
injection of wild-type and caspase-3 deficient mice at 48 h
post-ovulation with Jo2 antibody, an approach used rou-
tinely to activate the FAS death receptor in vivo [48,49].
The concentration of Jo2 used herein the present study
has been shown to be sublethal [48]. The lack of a pro-ap-
optotic effect of Jo2, or for that matter of PGF2α, when in-
jected at 24 h post-ovulation could not be attributed to
lack of FAS since the receptor was present in CL derived
from all treatment groups regardless of genotype. Of fur-
ther interest, both Jo2 and PGF2α induced a significant in-
crease in caspase-8 activity in CL homogenates. While FAS-
mediated signaling clearly involves recruitment and acti-
vation of caspase-8 in all cell types analyzed to date [50],
the finding that activity of this enzyme in the CL was so
dramatically induced by PGF2α in vivo was a surprise. Se-
quence analysis indicates that the cloned receptor for
PGF2α [51,52] does not contain a death-domain (DD),
the structural motif found in death receptors that are ca-
pable of activating caspase-8 [50]. Therefore, we can only
deduce that the ability of PGF2α to increase caspase-8 activ-
ity is indirectly due to its local modulation of death recep-
tor activation in the CL.

Such a concept would be in keeping with studies of es-
trous cyclicity in mice lacking functional FAS [18], FasL
[18] or TNF receptors [53]. In all three of these mutant
mouse lines, luteal phase defects and/or aberrant estrous
cycles have been reported. While such findings lend sup-
port to the importance of death receptor signaling in nor-
mal luteal regression, the disrupted follicular dynamics
and ovarian function in these mutants also hindered our
attempts to examine lpr/lpr mice (Jackson Laboratories)
for defects in either PGF2α-induced luteal regression or
luteal cell apoptosis. In our hands the lpr/lpr mice failed to
consistently respond to gonadotropin stimulation as did
their wild type siblings (data not shown) lending further
support to their irregular cyclicity reported previously
[18]. Nonetheless, in light of the data presented, we
conclude that PGF2α, along with pro-apoptotic cytokines
activated in response to PGF2α, work in concert to orches-
trate luteal demise in vivo via a caspase-3-dependent path-
way of apoptosis. Our current efforts are directed at
determining the mechanism(s) by which PGF2α up-regu-
lates the activity of death receptor function in the CL, as
well as which specific death ligand-receptor family mem-
bers are expressed, and modulated by PGF2α, in the CL.

Figure 4
Quantitative analysis of Caspase-8 activity in CL in response 
to IgG, Jo2 or PGF2α in vivo. The level of caspase-8 activity 
was determined in CL isolated from ovaries collected from 
WT mice 8 h following injection IgG (2 µg/IV), Jo2 (2 µg/IV) 
or PGF2α (10 µg/IP). The asterisk (*) represent differences 
from the control P < 0.05. The experiment was replicated 
three separate times (n = 3) with different groups of mice.
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